

MACRO-LINKAGES, OIL PRICES AND DEFLATION WORKSHOP JANUARY 6-9,2009

DSGE Modelling at the Banco de Portugal

Ricardo Mourinho Félix Economics and Researach Department Banco de Portugal

DSGE modelling at the Banco de Portugal

Ricardo Mourinho Félix

Economics and Research Department, Banco de Portugal

IMF Macro Modelling Workshop

Washington, DC

January 6-9, 2009

R. Félix (BdP) IMF Workshop 1 / 4

Outline

- DSGE models at the Banco de Portugal
- 2 Introducing and calibrating PESSOA
 - Households and labour unions
 - Firms
 - Government
 - Rest of the world and market clearing
 - Calibration
- 3 Increasing competition in the domestic markets
 - Motivation of the paper
 - Simulation design and results
 - Main findings
- 4 Ongoing research using PESSOA
- 6 Directions for further research

DSGE models at the Banco de Portugal

DSGE modelling activities started in 2005

Available DSGE models

EA-US model Alves, N., S. Gomes and J. Sousa (2007)

PESSOA model Almeida, V., G. Castro and R. Félix (2008)

Ongoing DSGE research projects

- Available models are being used in applied research
- EAGLE model: joint project with ECB and Banca d'Italia
- Identification issues in DSGE models
- Credit frictions in DGSE models

Introducing PESSOA

PESSOA

Portuguese

 \boldsymbol{E} conomy

Structural

 $oldsymbol{S}$ mall

Open economy

Analytical model

Almeida, Vanda, Gabriela Castro and Ricardo Mourinho Félix (2008) "Improving competition in the non-tradables goods and labour market" WP 16/2008, Banco de Portugal

R. Félix (BdP) IMF Workshop 4 / 47

Introducing *PESSOA*: the model

Figure 1: Model flowchart

Introducing *PESSOA*: the model

General features

- SOE integrated in a monetary union (=euro area)
- 6 types of agents:
 - Households
 - Labour unions
 - Manufacturers (intermediate goods producers)
 - Distributors (final goods producers)
 - Government
 - Rest of the world (=euro area $\Rightarrow S = 1$)
- Labour and product differentiation
- Competition: monopolistic in output markets, perfect in input markets
- Real and nominal rigidities (quadratic adjustment costs)

Introducing *PESSOA*: the model

PESSOA is largely inspired on GIMF (Kumhof, M. and M. Laxton (2007))

PESSOA

- Small-open economy model
- Exogenous monetary policy
- No role for public investment
- Trade in semi-finished goods
- Heterogeneous import contents

GIMF

- Multi-country model
- Endogenous monetary policy
- Public investment plays a role
- Trade in intermediate and final goods
- Homogeneous import content

Households (I)

General features

- Blanchard-Yaari overlapping generations, declining lifetime productivity
- Liquidity constrained and liquidity unconstrained $(H \in \{LIQ, OLG\})$
- Consume goods from distributors, supply labour to a union
- Pay taxes on consumption and labour income, receive transfers
- External habit persistence

OLGs' specific features

- Own firms
- Hold domestic and foreign bonds

Households (II)

CRRA utility

$$U_{a,t}^{H}(h) = \frac{1}{1-\gamma} \left[\left(\frac{C_{a,t}^{H}(h)}{Hab_{a,t}^{H}} \right)^{\eta^{H}} (1 - L_{a,t}^{H}(h))^{1-\eta^{H}} \right]^{1-\gamma}$$

Budget constraints

• OLG:

$$P_{t}C_{a,t}^{OLG}(h) + B_{a,t}(h) + B_{a,t}^{*}(h) = (1 - \tau_{L,t})W_{t}\Phi_{a}L_{a,t}^{OLG}(h) + \text{Tansfers}_{a,t}^{OLG}(h) + \frac{1}{\theta} \left[i_{t-1}B_{a-1,t-1}(h) + i_{t-1}^{*}B_{a-1,t-1}^{*}(h) \right] + \text{Dividends}_{a,t}(h)$$

• LIQ:

$$P_t C_{a,t}^{LIQ}(h) = (1 - \tau_{L,t}) W_t \Phi_a L_{a,t}^{LIQ}(h) + \text{Transfers}_{a,t}^{LIQ}(h)$$

where $P_t = P_t^C (1 + \tau_{C,t})$ is the numeraire.

R. Félix (BdP)

Households (III)

Utility maximisation problems

• OLG:

$$\max_{C_{a,t}^{OLG}(h), L_{a,t}^{OLG}(h), B_{a,t}(h), B_{a,t}^*(h)} E_t \sum_{s=0}^{\infty} (\beta \theta)^s U_{a,t+s}^{OLG}(h)$$

s.t. Intertemporal budget constraint OLG_t

• LIQ:

$$\max_{C_{a,t}^{LIQ}(h), L_{a,t}^{LIQ}(h)} E_t \sum_{s=0}^{\infty} (\beta \theta)^s U_{a,t+s}^{LIQ}(h)$$

s.t. Intratemporal budget constraint LIQ_t

Wealth

 $hw_t + fw_t = \text{human wealth+financial wealth}$

 $\tilde{R}_{t+s} = \prod_{l=1}^{s} \theta / i_{t+l-1}$ human wealth discount factor

Labour unions

General features

- Hire labour from households, rent it to manufacturers charging a markup
- Pay tax on "dividend" arising from monopolistic competition
- Quadratic wage growth adjustment costs

Dividend

$$D_t^U(h) = (1 - \tau_{L,t}) \left[(V_t(h) - W_t) U_t(h) - \text{Adj.costs}_t(h) \right]$$

Dividend maximisation problem

$$\max_{V_t(h)} E_t \sum_{s=0}^{\infty} \tilde{R}_{t+s} D_{t+s}^U(h)$$

s.t. Adj.costs, Type h labour demand

Manufacturers (I)

General features

- Produce tradable and non-tradable goods $(J \in \{T, N\})$, using labour from unions and capital (formed with investment good from distributors)
- Pay social security contributions on wage bill, tax on dividends
- Quadratic price growth and investment adjustment costs

Production function

$$Z_t^J(j) = \left((1 - \alpha_U^J)^{\frac{1}{\xi_{ZJ}}} \left(K_t^J(j) \right)^{\frac{\xi_{ZJ} - 1}{\xi_{ZJ}}} + (\alpha_U^J)^{\frac{1}{\xi_{ZJ}}} \left(T_t A_t^J U_t^J(j) \right)^{\frac{\xi_{ZJ} - 1}{\xi_{ZJ}}} \right)^{\frac{\xi_{ZJ} - 1}{\xi_{ZJ} - 1}}$$

Capital accumulation equation

$$K_{t+1}^{J}(j) = (1 - \delta^{J})K_{t}^{J}(j) + I_{t}^{J}(j)$$

Manufacturers (II)

Dividend

$$D_t^J(j) = \left[P_t^J(j) Z_t^J(j) - (1 + \tau_{SP,t}) V_t U_t^J(j) - P_t^I I_t^J(j) - (\text{Fix.+Adj.costs})_t^J(j) \right] - \tau_{K,t} \left[P_t^J(j) Z_t^J(j) - (1 + \tau_{SP,t}) V_t U_t^J(j) - P_t^I \left(q_t^J \delta^J K_t^J(j) \right) - (\text{Fix.+Adj.costs})_t^J(j) \right]$$

Dividend maximisation problem

$$\max_{P_t^J(j), I_t^J(j), U_t^J(j), K_{t+1}^J(j)} E_t \sum_{s=0}^{\infty} \tilde{R}_{t+s} D_{t+s}^J(j)$$

s.t. Cap.accum.equation, Prod.function, Adj.costs, Type j intermediate good demand

R. Félix (BdP)

Distributors (I): General features

Two-stage production technology

1st stage

- Produce composite tradable good using domestic tradables and imported goods
- Quadratic import content adjustment costs

2nd stage

- Produce private and government consumption, investment and export goods $(F \in \{C, I, G, X\})$ using tradable good produced in 1st stage and non-tradable goods from domestic manufacturers
- Pay tax on profits
- Quadratic price growth adjustment costs

Distributors (II): 1st stage

Production function

$$Y_{t}^{AF}(f) = \left(\left(\alpha_{AF} \right)^{\frac{1}{\xi_{AF}}} \left(Z_{t}^{TF}(f) \right)^{\frac{\xi_{AF} - 1}{\xi_{AF}}} + \left(1 - \alpha_{AF} \right)^{\frac{1}{\xi_{AF}}} \left(M_{t}^{F}(f) \left[1 - \Gamma_{t}^{AF}(f) \right] \right)^{\frac{\xi_{AF} - 1}{\xi_{AF}}} \right)^{\frac{\xi_{AF} - 1}{\xi_{AF} - 1}}$$

Cost

$$C_t^F(f) = P_t^T Z_t^{TF}(f) + P_t^* M_t^F(f)$$

Cost minimisation problem

$$\min_{Z_t^{TF}(f), M_t^F(f)} C_t^F(f)$$

s.t. Prod.function, Adj.costs

Distributors (III): 2nd stage

Production function

$$Y_{t}^{F}(f) = \left((1 - \alpha_{F})^{\frac{1}{\xi_{F}}} \left(Y_{t}^{AF}(f) \right)^{\frac{\xi_{F} - 1}{\xi_{F}}} + (\alpha_{F})^{\frac{1}{\xi_{F}}} \left(Z_{t}^{NF}(f) \right)^{\frac{\xi_{F} - 1}{\xi_{F}}} \right)^{\frac{\xi_{F}}{\xi_{F} - 1}}$$

Dividend

$$D_{t}^{F}(f) = (1 - \tau_{D,t}) \left[P_{t}^{F}(f) Y_{t}^{F}(f) - \Lambda_{t}^{AF}(f) Y_{t}^{AF}(f) - P_{t}^{N} Z_{t}^{NF}(f) - (\text{Fix.+Adj.costs})_{t}^{F}(f) \right]$$

Dividend maximisation problem

$$\max_{P_t^F(f), Y_t^{AF}(f), Z_t^{NF}(f)} E_t \sum_{s=0}^{\infty} \tilde{R}_{t+s} D_{t+s}^F(f)$$

s.t. Prod.function, Adj.costs, Type f final good demand

Government

General features

- Collects taxes, pay/receives transfers, consumes, issues debt
- Budget constraint

$$SG_t = \text{Taxes}_t - P_t^G G_t + \text{NetTransfers}_t^G$$

 $B_t = B_{t-1} - SG_t - (i_{t-1} - 1) B_{t-1}$

• Structural budget balance fiscal rule

$$\left(\frac{SG}{GDP}\right)_{t} = \left(\frac{SG}{GDP}\right)_{t}^{tar} + d_{tax}\left(\frac{RV_{t} - RV_{t}^{ss}}{GDP_{t}^{ss}}\right) + d_{debt}\left(\frac{B_{t}}{GDP_{t}^{ss}} - \left(\frac{B}{GDP}\right)_{t}^{tar}\right)$$

• Labour income tax rate is set endogenously

Rest of the world and market clearing

Rest of the world = euro area

- Trade linkages: sells goods to distributors, buys export goods from distributors
- Financial linkages: households sell/buy bonds in the RoW

Market clearing

$$\begin{split} &\sum_{H} L_{t}^{H} = \sum_{J} U_{t}^{J} \\ &Z_{t}^{J} = \sum_{F} Z_{t}^{JF} + \text{Fix.} + \text{Adj.costs}_{t} \\ &Y_{t}^{C} = \sum_{H} C_{t}^{H} + \text{Fix.} + \text{Adj.costs}_{t}; \quad Y_{t}^{I} = \sum_{J} I_{t}^{J} + \text{Fix.} + \text{Adj.costs}_{t} \\ &Y_{t}^{G} = G_{t} + \text{Fix.} + \text{Adj.costs}_{t}; \quad Y_{t}^{X} = X_{t} + \text{Fix.} + \text{Adj.costs}_{t} \\ &B_{t}^{*} = i_{t-1} B_{t-1}^{*} + P_{t}^{X} X_{t} - P_{t}^{*} M_{t} + \text{NetTransfers}_{t}^{*} \end{split}$$

R. Félix (BdP) IMF Workshop 18 / 47

Calibration

- Productivity growth, inflation rate, interest rate: euro area DSGE models
- Steady-state key ratios: National Accounts data, 1995-2006
- Structural parameters: DSGE literature
- Nominal and real rigidities: Parameters from the literature as initial guesses

Increasing competition in the domestic markets: motivation

The Portuguese economy: 90's versus 2000's

90's A case of success in the European integration process

2000's Slowdown in economic activity, real divergence vs. euro area

What is behind this?

Most popular stories are:

- FDI was diverted to Eastern European countries
- Integration of emerging economies with low unit labour costs

It can be disputed:

- FDI: $E(r^K) > \text{cost of capital}$
- Non-competitive Portuguese companies were displaced

Increasing competition in the domestic markets: motivation

How to restore competitiveness in the new international environment?

Increasing competition in domestic markets fosters international competitiveness

- Improves resource allocation
- Reduces non-tradable costs (knock-on effects)
- Crucial for a sound business environment (FDI inflows)
- Faster adjustment to shocks
- Portugal has still margin to improve competition

References: OECD, EC; Aghion; Høj, Conway, Nicoletti; Laxton and Bayoumi; Blanchard and Giavazzi

◀□▶ ◀圖▶ ◀臺▶ 臺灣 ∽ 옷♡

Increasing competition in the domestic markets: motivation

How to restore competitiveness in the new international environment?

Figure 2: Regulation stance in Portugal

R. Félix (BdP) IMF Workshop 22 / 47

Simulation design

Features

- Permanent shocks to non-tradables price and wage markups
- Perfect foresight/information

Design

Non-tradable: Decline of 2 pp. in price markup (from 20% to 18%)

Wage: Decline of 2.5 pp. in wage markup (from 25% to 22.5%)

Pass-through: 80 % of the decline achieved in 2 years

The impact of increasing competition in non-tradables

Table 1: LR impact

	NT
GDP	1.3
Consumption	1.9
GFCF	2.1
Exports	1.5
Imports	0.3
Human wealth	1.2
Real wage (firms)	0.5
Labour inc. tax (pp.)	-2.0
NFA (% GDP)	4.7
Real exch. rate (+ depr.)	1.5
Domestic ToT (+ depr.)	1.7
Price tradables	0.3
Price non-tradables	-1.4
Tradables output	2.0
Non-tradables output	1.4
Tradables hours	1.7
Non-tradables hours	1.2
Source: Own calculations	

- 1 Real exchange rate depreciation $(p^N \downarrow, p^T \uparrow) \Rightarrow \lambda^F \downarrow \Rightarrow (p^X \downarrow, \epsilon \uparrow)$
- 2 Higher demand for domestic intermediates and final goods $(p^X \downarrow, \epsilon \uparrow) \Rightarrow X \uparrow \\ \epsilon \uparrow \Rightarrow (Z^{TF} \uparrow, M^F \uparrow)$
- Increase in the capital intensity of output $(p^I/v) \downarrow \Rightarrow (K/L) \uparrow$
- 4 Households' consumption increases $(w \uparrow, \tau_L \downarrow) \Rightarrow hw \uparrow; fw \uparrow \Rightarrow C \uparrow$

◆ロ → ◆団 → ◆ 圭 → ・ 圭 |= か へ ()

The impact of increasing competition in labour market

Table 2: LR impact

	$\overline{\mathrm{NT}}$	W	All
GDP	1.3	1.2	2.5
Consumption	1.9	1.7	3.5
GFCF	2.1	0.8	2.9
Exports	1.5	1.1	2.5
Imports	0.3	0.3	0.6
Human wealth	1.2	1.2	2.3
Real wage (firms)	0.5	-0.6	0.0
Labour inc. tax (pp.)	-2.0	-1.2	-3.2
NFA (% GDP)	4.7	4.5	9.2
Real exch. rate (+ depr.)	1.5	0.8	2.2
Domestic ToT (+ depr.)	1.7	0.0	1.7
Price tradables	0.3	-0.3	0.0
Price non-tradables	-1.4	-0.3	-1.7
Tradables output	2.0	1.7	3.7
Non-tradables output	1.4	0.8	2.2
Tradables hours	1.7	2.0	3.7
Non-tradables hours	1.2	1.1	2.2

Source: Own calculations

- Real exchange rate depreciation $(p^N, p^T) \downarrow \Rightarrow \lambda^F \downarrow \Rightarrow (p^X \downarrow, \epsilon \uparrow)$
- 2 Higher demand for domestic intermediates and final goods $(p^X \downarrow, \epsilon \uparrow) \Rightarrow X \uparrow \\ \epsilon \uparrow \Rightarrow (Z^{TF} \uparrow > M^F \uparrow)$
- 3 Higher labour intensity $(v/p^I) \downarrow \Rightarrow (K/L) \downarrow$
- 4 Households' consumption increases $D^{U} \downarrow < (w \uparrow, \tau_L \downarrow) \Rightarrow hw \uparrow ; fw \uparrow \Rightarrow C \uparrow$

Implementation issue: SR negative impact on consumption

Figure 3: SR impact

- Real interest rate increases temporarily $(\pi \downarrow; \bar{i}) \Rightarrow r \uparrow$
- 2 Households' consumption declines $r \uparrow \Rightarrow hw \downarrow \Rightarrow C \downarrow$
- 3 Higher demand, hours increase $\pi \downarrow \Rightarrow \epsilon \uparrow \Rightarrow Y \uparrow \Rightarrow L \uparrow$

R. Félix (BdP) IMF Workshop 26 / 47

The impact of increasing competition: main findings

- Increasing competition in domestic markets promotes the real exchange rate adjustment of the Portuguese economy within the EMU
- A cut in non-tradable goods prices and wage markups improves international competitiveness and boost economic activity
- Practical implementation issue: short-run negative impact in consumption and leisure
- Estimated impacts are on the downside: fiercer competition induces productivity gains not considered

The Portuguese economy in the EMU: a story of shocks and frictions (ongoing research!)

Aim of the study

Assess the performance of the Portuguese economy in the EMU through the lens of a DSGE model and draw some policy implications (if there are some!)

Structure of the article

- Empirical evidence and identification of some stylised facts
- Main shocks and the role of frictions
 - S1 Total factor productivity slowdown
 - S2 The fiscal policy imbalance and the fiscal consolidation
 - S3 The aftermath of the sharp interest rate decline
 - S4 Fiercer competition in international goods markets
 - S5 Still low competition in domestic markets
- Policy implications (hopefully some will arise!)

Directions for further research

- Extend the calibrated version of the model to include
 - Macro-financial linkages
 - The role of commodities, in particular oil
 - Search and matching frictions in the labour market
- Estimate a stripped down version of the model using Bayesian techniques
- Phase-in the model in regular projection and simulation activities

DSGE modelling at the Banco de Portugal

Ricardo Mourinho Félix

Economics and Research Department, Banco de Portugal

IMF Macro Modelling Workshop

Washington, DC

January 6-9, 2009

R. Félix (BdP) $\hspace{1.5cm} \text{IMF Workshop} \hspace{1.5cm} 30 \hspace{0.1cm} / \hspace{0.1cm} 47$

The regulatory stance in Portugal (A1)

Figure 4: PMR indicators

◀□▶ ◀률▶ ◀불▶ ◀불▶ 불|= 쒸٩

R. Félix (BdP) IMF Workshop 31 / 47

The regulatory stance in Portugal (A2)

Figure 5: EPL indicators

◄□▶ ◀률▶ ◀불▶ ◀불▶ 불|= 쒸٩(

R. Félix (BdP) IMF Workshop 32 / 47

The regulatory stance in Portugal (A3)

Figure 6: Weight of administered prices in HICP

R. Félix (BdP) IMF Workshop 33 / 4

Introducing PESSOA

Figure 7: Model flowchart

R. Félix (BdP) IMF Workshop 34 / 47

Households

Rest of the **Manufacturers** world D^T , D^N i*B*ε $D^{C}, D^{G},$ \mathbf{D}^{U} D^I,D^X **OLG** households COLG L^OLG iΒ $au_{
m L}$ **Retailers** Labour Government (C,G,I,X) unions $\mathsf{L}^{\mathsf{LIQ}}$ $\mathbf{C}^{\mathsf{LIQ}}$ LIQ households

Figure 8: The households' flowchart

Firms

Figure 9: The firms' flowchart

OLG households

Optimal aggregate conditions

$$\frac{C_t^{OLG}}{n(1-\psi) - L_t^{OLG}} = \left(\frac{\eta^{OLG}}{1-\eta^{OLG}}\right) (1-\tau_{L,t}) w_t$$

$$i_t = i_t^*$$

$$C_t^{OLG} = mpc_t \left(hw_t^L + hw_t^K + fw_t \right)$$

$$hw_t^L = n(1 - \psi)w_t(1 - \tau_{L,t}) + \frac{\theta \chi}{r_t}hw_{t+1}^L$$

$$hw_t^K = (1 - \iota) \left(d_t^N + d_t^T + d_t^C + d_t^G + d_t^I + d_t^X \right) \left(1 - \psi \right) \left(d_t^U + trg_t + trx_t \right) + \frac{\theta}{r_t} hw_{t+1}^K$$

$$fw_t = r_{t-1} \left[b_{t-1} + b_{t-1}^* \cdot \epsilon_{t-1} \right]$$

R. Félix (BdP) IMF Workshop 37 / 47

Labour unions

The equilibrium condition: a wage Phillips curve

$$\begin{split} &\frac{\sigma_{U,t}}{\sigma_{U,t}-1}w_t - v_t = \\ &= \frac{\phi_U T_t}{\sigma_{U,t}-1} \left(\frac{\pi_t^V}{\pi_{t-1}^V} - 1\right) \frac{\pi_t^V}{\pi_{t-1}^V} - \left(\frac{1-\tau_{L,t+1}}{1-\tau_{L,t}}\right) \frac{\theta}{r_t} \frac{U_{t+1} T_{t+1}}{U_t} \frac{\phi_U}{\sigma_{U,t}-1} \left(\frac{\pi_{t+1}^V}{\pi_t^V} - 1\right) \frac{\pi_{t+1}^V}{\pi_t^V} \end{split}$$

in steady-state:

$$v = \frac{\sigma_U}{\sigma_U - 1} w$$

R. Félix (BdP) IMF Workshop 38 / 47

Manufacturers

The equilibrium conditions: a Phillips curve

$$\begin{split} \frac{\sigma_{J,t}}{\sigma_{J,t}-1} \frac{\lambda_t^J}{p_t^J} - 1 &= \\ \frac{\phi_{P^J}}{\sigma_{J,t}-1} \left(\frac{\pi_t^J}{\pi_{t-1}^J} - 1\right) \frac{\pi_t^J}{\pi_{t-1}^J} - \left(\frac{1-\tau_{K,t+1}}{1-\tau_{K,t}}\right) \frac{\theta}{r_t} \frac{\phi_{P^J}}{\sigma_{J,t}-1} \frac{p_{t+1}^J}{p_t^J} \frac{Z_{t+1}^J}{Z_t^J} \left(\frac{\pi_{t+1}^J}{\pi_t^J} - 1\right) \frac{\pi_{t+1}^J}{\pi_t^J} \end{split}$$

in steady-state:

$$p^J = \frac{\sigma_J}{\sigma_J - 1} \lambda^J$$

R. Félix (BdP) IMF Workshop 39 / 47

Manufacturers

The equilibrium conditions: desired capital stock level

$$\begin{split} q_t^J &= \frac{\theta}{r_t} \frac{\pi_{t+1}^I}{\pi_{t+1}} \left[q_{t+1}^J \left(1 - \delta^J \right) + \frac{r_{K,t+1}^J}{p_{t+1}^I} - \tau_{K,t+1} \left(\frac{r_{K,t+1}^J}{p_{t+1}^I} - q_{t+1}^J \delta^J \right) \right] \\ &+ (1 - \tau_{K,t+1}) \frac{\theta}{r_t} \frac{\pi_{t+1}^I}{\pi_{t+1}} \frac{I_{t+1}^J}{K_{t+1}^J} \left[\phi_K^J \left(\frac{I_{t+1}^J}{K_{t+1}^J} - \frac{I^J}{K^J} \right) + \phi_I^J \left(\frac{I_{t+1}^J}{K_{t+1}^J} - \frac{I_t^J}{K_t^J} \right) \right] \\ &- (1 - \tau_{K,t+1}) \frac{\theta}{r_t} \frac{\pi_{t+1}^I}{\pi_{t+1}} \left[\frac{\phi_K^J}{2} \left(\frac{I_{t+1}^J}{K_{t+1}^J} - \frac{I^J}{K^J} \right)^2 + \frac{\phi_I^J}{2} \left(\frac{I_{t+1}^J}{K_{t+1}^J} - \frac{I_t^J}{K_t^J} \right)^2 \right] \end{split}$$

In steady-state, after-tax real return on capital equals the certain equivalent real return of government bonds.

$$\frac{r}{\theta} = 1 + (1 - \tau_k) \left(\frac{r_K^J}{p^I} - \delta^J \right)$$

R. Félix (BdP) IMF Workshop 40 / 47

Manufacturers

The equilibrium conditions: optimal investment path

Investment path condition depends on investment adjustment cost parameters.

$$q_t^J = 1 + (1 - \tau_{K,t}) \left[\phi_K^J \left(\frac{I_t^J}{K_t^J} - \frac{I^J}{K^J} \right) + \phi_I^J \left(\frac{I_t^J}{K_t^J} - \frac{I_{t-1}^J}{K_{t-1}^J} \right) \right]$$

In steady-state, Tobin's-Q equals unity, market value of installed capital equals replacement cost.

The equilibrium conditions: optimal labour demand

$$(1 + \tau_{SP,t}) v_t = \lambda_t^J \left(\frac{Z_t^J \alpha_U^J}{T_t A_t^J U_t^J} \right)^{\frac{1}{\xi_{ZJ}}} T_t A_t^J$$

R. Félix (BdP) IMF Workshop 41 / 47

Calibration: steady-state key ratios

Table 3: Steady-state key ratios

	Data	Model
Expenditure (as a % of GDP)		
Private consumption	0.64	0.61
Government consumption and GFCF	0.22	0.21
Private investment	0.21	0.21
Exports	0.29	0.29
Imports	0.37	0.33
Labour income share (as a % of overall income)	0.57	0.56
Tradable goods	0.54	0.54
Non-tradable goods	0.58	0.58
Capital-output ratio (as a % of output)	NA	2.34
Tradable goods	NA	2.53
Non-tradable goods	NA	2.21
Government (as a % of GDP)		
Debt stock	0.57	0.53
Fiscal balance	-0.07	-0.02
Overall revenues	0.38	0.39
Overall expenditure	0.45	0.41
External account (as a % of GDP)		
Net foreign assets	-0.60	-0.60
Current account	-0.06	-0.02
Trade balance	-0.08	-0.04

Calibration: households and labour union parameters

Table 4: Households parameters

Households discount rate (annualised)	β	0.97
Intertemporal elasticity of substitution	$\frac{1}{\gamma}$	0.20
OLG households instant probability of death (annualised)	$1 - \theta$	0.04
OLG households habit persistence	ν	0.70
Consumption share - OLG households	η_{OLG}	0.74
Consumption share - LIQ households	η_{LIQ}	0.70
Lifetime productivity decline rate (annualised)	$1-\chi$	0.04
Share of LIQ households	ψ	0.40
Share of dividend transfers from OLG to LIQ households	ι	0.20
Memo items:		
Marginal propensity to consume wealth		0.05
$Average\ planning\ horizon\ (years)$		25
Average worklife (years)		25

Table 5: Labour union parameters

Wage mark-up	$\frac{\sigma_U}{\sigma_U-1}$	1.25
Wage rigidity - Adjustment cost	ϕ_U	200
Memo items:		
Duration wage contracts (quarters)		6.4

Calibration: manufacturers parameters

Table 6: Manufacturers parameters

		Tradable	Non-tradable
		J = T	J = N
Depreciation rate (annualised)	δ	0.09	0.09
Labour augmenting prod. growth (annualised)	g	1.02	1.02
EoS between capital and labour	ξ_J	0.99	0.99
Quasi labour income share	α_{J}	0.60	0.60
Price markup	$\frac{\sigma_J}{\sigma_J-1}$	1.10	1.20
Capital adjustment cost	$\overset{{}_\circ}{\phi}_{KJ}$	50	50
Investment adjustment cost	$\phi_{I,J}^{II}$	100	100
Price adjustment cost	ϕ_{PJ}^{10}	200	200
Memo items:			
Duration price contracts (quarters)		3.9	5.7

R. Félix (BdP) IMF Workshop 44 / 47

Calibration: markups

Figure 10: Markups and PMR indicator

R. Félix (BdP) IMF Workshop 45 / 47

Calibration: distributors parameters

Table 7: Distributors parameters

		Consumer	Govt.	Invest.	Export
		F = C	F = G	F = I	F = X
EoS domestic tradable/imported good	ξ_{AF}	1.50	1.50	1.50	1.50
Assembled good quasi domestic content	α_{AF}	0.12	0.02	0.02	0.19
EoS assembled/non-tradable good	ξ_F	0.50	0.50	0.50	0.50
Non-tradable good (quasi) factor share	α_F	0.71	0.98	0.88	0.15
Price markup	$\frac{\sigma_F}{\sigma_F-1}$	1.05	1.05	1.05	1.03
Import content adjustment cost	ϕ_{AF}	2	2	2	2
Price adjustment cost	ϕ_{PF}^{n}	200	200	200	200
Memo items:					
$Implied\ import\ content$		0.29	0.10	0.40	0.30
$Implied\ non-tradable\ content$		0.38	0.88	0.53	0.05
Duration price contracts (quarters)		2.7	2.7	2.7	1.8

◆ロ → ◆昼 → ◆ き → き | = り へ ○

R. Félix (BdP) IMF Workshop 46 / 47

Calibration: government and foreign economy parameters

Table 8: Government parameters

Labour income tax rate	$ au_L$	0.29
Consumption tax rate	$ au_C^-$	0.30
Capital income tax rate	$ au_K^{\odot}$	0.17
Employers social security contribution rate	$ au_{SP}$	0.19
Debt to GDP ratio (annualised)	$\frac{b}{gdp}$	0.53
Speed adjustment towards the target debt ratio parameter	$d_{debt}^{\ gap}$	0.10

Table 9: Foreign economy parameters

Foreign interest rate (annualised)	i^*	1.05
Foreign inflation (annualised)	π^*	1.02
EoS between domestic and imported goods	ξ^*	1.50

R. Félix (BdP) IMF Workshop 47 / 47