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1. Introduction

There has been enormous progress in recent years in the development of dynamic, stochastic

general equilibrium (DSGE) models for the purpose of monetary policy analysis. These

models have been shown to fit aggregate data well by conventional econometric measures.

For example, they have been shown to do as well or better than simple atheoretical statistical

models at forecasting outside the sample of data on which they were estimated. In part

because of these successes, a consensus has formed around a particular model structure, the

New Keynesian model.

We begin by presenting a detailed derivation of the simple New Keynesian model with

price setting frictions and no capital or investment. Although the model is too simple to

address data directly, it is nevertheless useful for analyzing some key questions in monetary

policy. For example, we discuss the role of the Taylor principle in achieving stable inflation

and output. According to the Taylor principle, it is best to counteract evidence of a rise in

inflation with a vigorous interest rate increase. We review the basis for this view. However,

we also note that there are reasons to be concerned about this policy. In particular, a policy-

induced rise in the interest rate may perversely destabilize the economy by providing a direct

boost to inflation. This can happen if interest rates are an important cost of production, as

when firms must borrow to finance their variable inputs. We also discuss other implications

of this working capital channel. Another policy topic addressed is how the New Keynesian

framework provides a basis for price level targeting, as opposed to inflation targeting. Finally,

we address the much debated topic of the interaction of monetary policy and the asset price

and other volatility of recent years. Here, we show how vigorous application of the Taylor

principle could inadvertently trigger a boom/bust episode. Our policy analysis discussion

is not meant to be definitive. Indeed, it will be evident that to make it definitive, further

econometric work is necessary to assign values to key model parameters. Our objective is

only to illustrate how the New Keynesian model provides a useful framework for analyzing

monetary policy questions and for evaluating alternative points of view on those questions.

The new monetary DSGE models are of interest not just because they represent labo-

ratories for the analysis of important monetary policy questions. They are also of interest

because they appear to address key empirical puzzles about monetary policy. It has long

been thought that it is virtually impossible to explain the very slow response of inflation

to a monetary disturbance without appealing to completely implausible assumptions about

price frictions (see, e.g., Mankiw (2000)). However, it turns out that modern DSGE models

do provide an account of the inertia in inflation and the strong response of real variables

to monetary policy disturbances, without appealing to seemingly implausible parameter val-

ues. Moreover, the models simultaneously explain the dynamic response of the economy to
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other shocks. We review these important findings. We explain in detail the contribution of

each feature of the consensus New Keynesian model in achieving this result. This discussion

follows closely the analysis in Christiano, Eichenbaum and Evans (2005) (CEE) and Altig,

Christiano, Eichenbaum and Evans (2005) (ACEL).

The econometric technique that is particularly suited to the shock-based analysis de-

scribed in the previous paragraph, is the one that matches impulse response functions esti-

mated by vector autoregressions (VARs) with the corresponding objects in a model. Using

US macroeconomic data, we show how the parameters of the consensus DSGE model are

estimated by this impulse-response matching procedure. The advantage of this econometric

approach is transparency and focus. The transparency reflects that the estimation strategy

has a simple graphical representation, involving objects - impulse response functions - about

which economists have strong intuition. The advantage of focus comes from the possibility

of studying the empirical properties of a model without having to specify a full set of shocks.

An important methodological development of recent years is the adoption of Bayesian meth-

ods of econometric inference. We show how to implement the impulse response matching

strategy using Bayesian methods. As a result, all the machinery of priors and posteriors, as

well as the marginal likelihood as a measure of model fit, is available to researchers doing

inference about DSGE models based on matching model and VAR-based impulse response

functions.

The paper is organized as follows. Section 2 describes the simple New Keynesian model

without capital. The following section reviews some policy implications of that model.

Section 4 describes he larger-sized version of the model, designed to econometrically address

macroeconomic data. Section 5 reviews the econometric aspects of the impulse-response

estimator. Section 6 reviews the results and conclusions are offered in Section 7. Many

algebraic derivations are relegated to an appendix.

2. Simple Model Without Capital

This section analyzes a version of the Calvo-sticky price New Keynesian model without

capital. In practice, the analysis of this model often begins with the familiar three equations:

the linearized ‘Phillips curve’, ‘IS curve’ and monetary policy rule. However, for our purposes

it is necessary to derive the equilibrium conditions from their foundations. This is in part

because we explore variations on the standard model and in part because we study the

Ramsey-optimal equilibrium of our model. Our strategy for computing Ramsey equilibria

requires the actual non-linear equilibrium conditions, not their linearized representation.1

1We follow the approach suggested by Kydland and Prescott (1980) and also implemented by Levin,
Onatski, Williams and Williams (2005) and others.
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The version of the New Keynesian model studied in this section is a modification of the

classic model considered in Clarida, Gali and Gertler (1999) and Woodford (2003), modified

in two ways. First, we accommodate the working capital channel emphasized by CEE and

Barth and Ramey (2002).2 The working capital channel results from the assumption that

firms’ variable inputs must be financed by short term loans. With this assumption, changes in

the interest rate affect the economy by changing firms’ variable production costs, in addition

to operating through the usual spending mechanism. There are several reasons to take the

working capital channel seriously. Using US Flow of Funds data, Barth and Ramey (2002)

argue that a substantial fraction of firms’ variable input costs are borrowed in advance.

Ravenna and Walsh (2006) provide evidence supporting the working capital channel, based

on instrumental variables estimates of a suitably modified Phillips curve. Finally, section

4 below shows that incorporating the working capital channel helps to explain the ‘price

puzzle’ and provides an answer to Ball (1994)’s ‘dis-inflationary boom’ critique of sticky

price models.

We explore a second modification to the classic New Keynesian model by incorporating

the assumption about materials inputs proposed in Basu (1995). Basu argues that a large

part (as much as half) of a firm’s output is used as materials inputs by other firms. The

working capital channel introduces the interest rate into costs while the materials assumption

makes those costs big. In the next section of this paper we show that these two factors

potentially have far-reaching consequences for monetary policy.

This section is organized as follows. The following subsection describes the private sector

of the economy, and derives equilibrium conditions associated with optimization and market

clearing. After that we specify the monetary policy rule and define the Taylor rule equilib-

rium. The last subsection below discusses the interpretation of a key parameter in our utility

function. The parameter controls the elasticity with which the labor input in our model econ-

omy adjusts in response to a change in the real wage. Traditionally, this parameter has been

viewed as being restricted by microeconomic evidence on the Frisch labor supply elasticity.

We summarize recent thinking, according to which this parameter is in fact not restricted by

observations about the Frisch elasticity. This discussion influences our interpretation of the

analysis of monetary policy in the next section, as well as our interpretation of the empirical

results in section 6 below.
2The first monetary DSGE model we are aware of that incorporates a working capital channel is Fuerst

(1992). Other early examples include Christiano (1991) and Christiano and Eichenbaum (1992a).
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2.1. Private Economy

2.1.1. Households

We suppose there is a large number of identical households. The representative household

solves the following problem:

max
{Ct,Ht,Bt+1}

E0

∞X
t=0

βt

Ã
logCt −

H1+φ
t

1 + φ

!
, 0 ≤ β ≤ 1, φ ≥ 0, (2.1)

subject to

PtCt +Bt+1 ≤ BtRt−1 +WtHt +Transfers and profitst. (2.2)

Here, Ct, Ht denote household consumption and market work, respectively. In (2.2), Bt+1

denotes the quantity of a nominal bond purchased by the household in period t and Rt

denotes the one-period gross nominal rate of interest on a bond purchased in period t.

Finally, Wt denotes the competitively determined nominal wage rate. The parameter, φ, is

discussed in section 2.3 below.

Optimization of Ht leads the representative household to equate the marginal cost of

working, in consumption units, with the marginal benefit, the real wage:

CtH
φ
t =

Wt

Pt
. (2.3)

Optimization of Bt+1 leads the household to equate the utility cost of the consumption

foregone in acquiring a bond with the corresponding benefit:

1

Ct
= βEt

1

Ct+1

Rt

πt+1
. (2.4)

Here, πt+1 is the gross rate of inflation from t to t+ 1.

2.1.2. Firms

A key feature of the New Keynesian model is its assumption that there are price-setting

frictions. These frictions are introduced in order to accommodate the evidence of inertia in

aggregate inflation. Obviously, the presence of price-setting frictions requires that firms have

the power to set prices, and this in turn requires the presence of monopoly power. A challenge

is to create an environment in which there is monopoly power, without contradicting the

obvious fact that actual economies have a very large number of firms. The Dixit-Stiglitz

framework of production handles this challenge very nicely, because it has a very large

number of price-setting monopolist firms. In particular, gross output is produced using a

representative, competitive firm using the following technology:

Yt =

µZ 1

0

Y
1
λf

i,t di

¶λf

, λf ≥ 1. (2.5)
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The representative firm takes the price of gross output, Pt, and the price of intermediate

inputs, Pit, as given. Profit maximization leads to the following first order condition:

Yi,t = Yt

µ
Pi,t

Pt

¶− λf
λf−1

. (2.6)

Substituting (2.6) into (2.5) yields the following relation between the aggregate price level

and the prices of intermediate goods:

Pt =

µZ 1

0

P
− 1
λf−1

i,t di

¶−(λf−1)
(2.7)

The ith intermediate good is produced by a single monopolist, who takes (2.6) as its

demand curve. The value of λf determines how much monopoly power the ith producer has.

If λf is large, then intermediate goods are poor substitutes for each other, and the monopoly

supplier of good i has a lot of market power. Consistent with this, note that if λf is large,

then the demand for Yi,t is relatively price inelastic (see (2.6)). If λf is close to unity, so that

each Yi,t is almost a perfect substitute for Yj,t, j 6= i, then ith firm faces a demand curve that

is almost perfectly elastic. In this case, the firm has virtually no market power.

The production function of the ith monopolist is:

Yi,t = ztH
γ
i,tI

1−γ
it , 0 ≤ γ ≤ 1, (2.8)

where zt is a technology shock whose stochastic properties are specified below. Here, Hit

denotes the level of employment by the ith monopolist. We follow Basu (1995) in supposing

that the ith monopolist uses the quantity of materials, Iit, as inputs to production. The

materials, Iit, are converted one-for-one from Yt in (2.5). For γ < 1, each intermediate good

producer in effect uses the output of all the other intermediate produces as input. When

γ = 1, then our model reduces to the classic New Keynesian model without capital.

The nominal marginal cost of the intermediate good producer is the following Cobb-

Douglas function of the price of its two inputs:

marginal costt =
µ

P̄t

1− γ

¶1−γ µ
W̄t

γ

¶γ
1

zt
.

Here, W̄t and P̄t are the effective prices of Hit and Iit, respectively:

W̄t = (1− νt) (1− ψ + ψRt)Wt

P̄t = (1− νt) (1− ψ + ψRt)Pt.

In this expression, νt denotes a subsidy to intermediate good firms and the term involving

the interest rate reflects the presence of a ‘working capital channel’. For example, ψ = 1
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corresponds to the case where the full amount of the cost of labor and materials must be

financed at the beginning of the period. When ψ = 0, no advanced financing is required. A

key variable in the model is the ratio of nominal marginal cost to the price of gross output,

Pt :

st = (1− νt)

µ
1

1− γ

¶1−γ µ
Wt/Pt

γ

¶γ
1

zt
(1− ψ + ψRt) . (2.9)

If the intermediate good firms faced no price-setting frictions, they would all set their

price as a fixed markup over nominal marginal cost:

λfPtst. (2.10)

In fact, we assume there are Calvo-style price setting frictions. An intermediate firm can

set its price optimally with probability 1− ξp, and with probability ξp it must keep its price

unchanged relative to what it was in the previous period:

Pi,t = Pi,t−1.

Consider the 1− ξp intermediate good firms that are able to set price optimally in period t.

There are no state variables in the intermediate good firm problem and all the firms face the

same demand curve. As a result, all firms able to optimize price in period t choose the same

price, which we denote by P̃t. It is clear that optimizing firms do not set P̃t equal to (2.10).

Setting P̃t to (2.10) would be optimal from the perspective of the current period, but it does

not take into account the possibility that the firm may be stuck with P̃t for several periods

into the future. Instead, the intermediate good firms that have an opportunity reoptimize

their price in the current period, do so to solve:

max
P̃t

Et

∞X
j=0

¡
ξpβ
¢j
υt+j

³
P̃tYi,t+j − Pt+jst+jYi,t+j

´
, (2.11)

subject to (2.8) and the requirement that it satisfy demand, (2.6), in each period. In (2.11),

βjυt+j is the multiplier on the household’s nominal period t+ j budget constraint. Because

they are the owners of the intermediate good firms, households are the recipients of firm

profits. In this way, it is natural that the firm should weigh profits in different dates and

states of nature using βjυt+j. Intermediate good firms take υt+j as given. The nature of the

family’s preferences, (2.1), implies:

υt+j =
1

Pt+jCt+j
.

In (2.11) the presence of ξp reflects that intermediate good firms are only concerned with

future scenarios in which they are not able to reoptimize the price chosen in period t.
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The first order condition associated with (2.11) is:

p̃t =
Et

P∞
j=0

¡
βξp
¢j
(Xt,j)

− λf
λf−1 λfst+j

Et

P∞
j=0

¡
βξp
¢j
(Xt,j)

− 1
λf−1

=
Kf

t

F f
t

, (2.12)

where Kf
t and F

f
t denote the numerator and denominator of the ratio after the first equality,

respectively. Also,

p̃t ≡
P̃t

Pt
, Xt,j ≡

½ 1
πt+j ···πt+1 j > 0

1 j = 0
.

Not surprisingly, (2.12) implies P̃t is set to (2.10) when ξp = 0. When ξp > 0, optimizing

firms set price so that it is the desired markup, λf , over marginal cost on average. It is useful

to write the numerator and denominator in (2.12) in recursive form. Thus,

Kf
t = λfst + βξpEtπ

λf
λf−1
t+1 Kf

t+1, (2.13)

F f
t = 1 + βξpEtπ

1
λf−1
t+1 F f

t+1. (2.14)

Expression (2.7) simplifies when we take into account that (i) the 1 − ξp intermediate

good firms that set their price optimally all set it to P̃t and (ii) the ξp firms that cannot

reset their price are selected at random from the set of all firms. Doing so,

p̃t =

⎡⎣1− ξpπ
1

λf−1
t

1− ξp

⎤⎦−(λf−1) .
It is convenient to use the last expression to eliminate p̃t in (2.12):

Kf
t = F f

t

⎛⎝1− ξpπ
1

λf−1
t

1− ξp

⎞⎠−(λf−1) . (2.15)

Cost minimization by the ith intermediate good producer leads it to equate the relative

price of its labor and materials inputs to the corresponding relative marginal productivities:

W̄t

P̄t

=
Wt

Pt
=

γ

1− γ

Iit
Hit

=
γ

1− γ

It
Ht

. (2.16)

Evidently, each firm uses the same ratio of inputs, regardless of its output price, Pit.

2.1.3. Aggregate Resources and the Private Sector Equilibrium Conditions

A notable feature of the New Keynesian model is the absence of an aggregate production

function. That is, given information about aggregate inputs and technology, it is not possible
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to say what aggregate output, Yt, is. This is because Yt also depends on how inputs are dis-

tributed among the various intermediate good producers. For a given amount of aggregate

inputs, Yt is maximized by distributing the inputs equally across producers. If the distri-

bution is not uniform a lower level of Yt occurs. In the New Keynesian model with Calvo

price frictions, resources are unequally allocated across intermediate good firms if, and only

if, Pit differs across i. Price dispersion in the model is caused by the interaction of inflation

with price-setting frictions. With price dispersion, the price mechanism ceases to allocate

resources efficiently, as too much production is done in firms with low prices and too little

in the firms with high prices. Yun (1996) derived a very simple formula that characterizes

the loss of output due to price dispersion. We derive that formula here.

Let Y ∗t denote the unweighted integral of gross output across intermediate good produc-

ers:

Y ∗t ≡
Z 1

0

Yi,tdi =

Z 1

0

zt

µ
Hit

Iit

¶γ

Iitdi = zt

µ
Ht

It

¶γ

It = ztH
γ
t I

1−γ
t .

Here, we have used linear homogeneity of the production function function, as well as the

result in (2.16), that all intermediate good producers use the same labor to materials ratio.

An alternative representation of Y ∗t makes use of the demand curve, (2.6):

Y ∗t = Yt

Z 1

0

µ
Pi,t

Pt

¶− λf
λf−1

di = YtP

λf
λf−1
t

Z 1

0

(Pi,t)
− λf
λf−1 di = YtP

λf
λf−1
t (P ∗t )

− λf
λf−1 . (2.17)

Thus,

Yt = p∗tztH
γ
t I

1−γ
t ,

where

p∗t ≡
µ
P ∗t
Pt

¶ λf
λf−1

. (2.18)

Here, p∗t ≤ 1 denotes Yun (1996)’s measure of the output lost due to price dispersion. From
(2.17),

P ∗t =

∙Z 1

0

(Pi,t)
−

λf
λf−1 di

¸−λf−1
λf

. (2.19)

According to (2.18), p∗t is a monotone transform on the ratio of two different weighted

averages of intermediate good prices. The ratio of these two weighted averages can only be

at its maximum of unity if all prices are the same.3

3The distortion, p∗t , is of interest in its own right. It is a sort of ‘endogenous Solow residual’ of the sort
called for by Prescott (1998). Whether the magnitude of fluctuations in p∗t are quantitatively important
given the actual price dispersion in data is something that deserves exploration. A difficulty that must be
overcome, in such an exploration, is determining what the benchmark efficient dispersion of prices is in the
data. In the model it is efficient for all prices to be exactly the same, but that is obviously only a convenient
normalization.
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Taking into account observations (i) and (ii) after (2.14), (2.19) reduces (after dividing

by Pt and taking into account (2.18)) to:

p∗t =

⎡⎢⎣¡1− ξp
¢⎛⎝1− ξpπ

1
λf−1
t

1− ξp

⎞⎠λf

+ ξp
π

λf
λf−1
t

p∗t−1

⎤⎥⎦
−1

. (2.20)

According to (2.20), there is price dispersion in the current period if there was dispersion

in the previous period and/or if there is a current shock to dispersion. Such a shock must

operate through the aggregate rate of inflation.

We conclude that the relation between the aggregate inputs used to produce gross output

and the uses of gross output is given by:

Ct + It = p∗tztH
γ
t I

1−γ
t . (2.21)

Here, Ct + It represents total gross output, while Ct represents value added.

The private sector equilibrium conditions of the model are (2.3), (2.4), (2.9), (2.13),

(2.14), (2.15), (2.16), (2.20) and (2.21). This represents 9 equations in the following 11

unknowns:

Ct, Ht, It, Rt, πt, p
∗
t , K

f
t , F

f
t ,

Wt

Pt
, st, νt. (2.22)

As it stands, the system is underdetermined. This is not surprising, since we have said

nothing about monetary policy or νt. We turn to this in the following section.

2.2. Log-linearized Equilibrium with Taylor Rule

We suppose that monetary policy follows a Taylor rule that is specified below. Because the

Taylor rule responds to the deviation between actual inflation and a target zero inflation

rate, it follows that inflation must be zero in steady state. In addition, we suppose that

the intermediate good subsidy, ν, is the constant that enforces (3.21) in steady state. This

treatment of policy implies that the steady state allocations of our model economy are

efficient in the sense that they coincide with the solution to the following planning problem:

max
{ct,Ht,it}

E0

∞X
t=0

βt

"
log ct −

H1+φ
t

1 + φ

#
(2.23)

subject to

ct + it = Hγ
t i
1−γ
t ,

where we have adopted the following scaling:

ct ≡
Ct

z
1/γ
t

, it ≡
It

z
1/γ
t

. (2.24)
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The problem, (2.23), is that of a planner who allocates resources efficiently across interme-

diate goods and who does not permit distortions due to monopoly power.

Because inflation, πt, fluctuates in equilibrium, (2.20) suggests that p∗t fluctuates too. It

turns out, however, that p∗t is constant to a first order approximation. To see this, note that

the absence of inflation in the steady state also guarantees there is no price dispersion in

steady state in the sense that p∗t is at its maximal value of unity (see (2.20)). With p
∗
t at its

maximum in steady state, small perturbations have a zero first-order impact on p∗t . This can

be seen by noting that πt is absent from the log-linear expansion of (2.20) about p∗t = 1:

p̂∗t = ξpp̂
∗
t−1. (2.25)

Here, a hat over a variable indicates:

ˆt =
d t ,

where denotes the steady state of the variable, t, and d t = t − denotes a small

perturbation in t from steady state. We suppose that in the initial period, p̂∗t−1 = 0, so

that, to a first order approximation, p̂∗t = 0 for all t.

We log-linearize the equilibrium conditions of our model economy about steady state.

Log-linearizing (2.13), (2.14) and (2.15) we obtain the usual representation of the Phillips

curve:

π̂t =

¡
1− βξp

¢ ¡
1− ξp

¢
ξp

ŝt + βEtπ̂t+1. (2.26)

Combining (2.3) with (2.9), taking into account (2.24) and setting the subsidy as just de-

scribed, real marginal cost is:

st =
1

λf

1− ψ + ψRt

1− ψ + ψR

µ
1

1− γ

¶1−γ Ã
ctH

φ
t

γ

!γ

.

Then,

ŝt = γ
³
φĤt + ĉt

´
+

ψ

(1− ψ)β + ψ
R̂t. (2.27)

Substituting out for the real wage in (2.16) using (2.3) and applying (2.24),

Hφ+1
t ct =

γ

1− γ
it. (2.28)

Similarly, scaling (2.21):

ct + it = Hγ
t i
1−γ
t .

Using (2.28) to substitute out for it in the above expression, we obtain:

ct +
1− γ

γ
Hφ+1

t ct = Hγ
t

∙
1− γ

γ
exp (τ t)H

φ+1
t ct

¸1−γ
.
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Log-linear approximation of this expression about steady state implies, after some algebra,

ĉt = Ĥt.

Substituting the latter into (2.27), we obtain:

ŝt = γ (1 + φ) ĉt +
ψ

(1− ψ)β + ψ
R̂t. (2.29)

Substituting out for ŝt into the Phillips curve, we obtain:

π̂t =

¡
1− βξp

¢ ¡
1− ξp

¢
ξp

∙
γ (1 + φ) ĉt +

ψ

(1− ψ)β + ψ
R̂t

¸
+ βπ̂t+1. (2.30)

In (2.30), ĉt is the percent deviation of Ct/z
1/γ
t from its steady state value. Since the value of

Ct/z
1/γ in steady state coincides with the first-best solution for Ct/z

1/γ
t , (2.23), we can refer

to ĉt as the output gap. When γ = 1 and ψ = 0, (2.30) reduces to the ‘Phillips curve’ in

the classic New Keynesian model. When materials are an important factor of production, so

that γ is small, then a given jump in the output gap has a smaller impact on inflation. The

reason is that in this case the aggregate price index is part of the input cost for intermediate

good producers. So, a small rise in prices in response to a given gap is an equilibrium because

individual intermediate good firms have less of an incentive to raise their prices in this case.

With ψ > 0, (2.30) indicates that a jump in the interest rate drives up prices. This is because

with an active working capital channel a rise in the interest rate drives up marginal cost.4

Now consider the intertemporal Euler equation. Expressing (2.4) in terms of scaled

variables,

1 = Et
βct

ct+1μ
1
γ

z,t+1

Rt

πt+1
, μz,t+1 ≡

zt+1
zt

.

Log-linearly expanding about steady state:

0 = Et

∙
ĉt − ĉt+1 −

1

γ
μ̂z,t+1 + R̂t − π̂t+1

¸
,

or,

ĉt = Et

h
ĉt+1 −

³
R̂t − bπt+1 − R̂∗t

´i
, (2.31)

where

R̂∗t ≡
1

γ
Etμ̂z,t+1.

We suppose that monetary policy, when linearized, is characterized by the following

Taylor rule:

R̂t = ρR̂t−1 + (1− ρ) [rππ̂t+1 + rcĉt] . (2.32)

The equilibrium of the log-linearly expanded economy is given by (??), (2.30), (2.31) and
(2.32).

4Equation (2.30) resembles equation (13) in Ravenna and Walsh (2006), except that we allow for materials
inputs, i.e., γ < 1.
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2.3. Frisch Labor Supply Elasticity

The magnitude of the parameter, φ, in the household utility function plays an important role

in the analysis in later sections. Indeed, this parameter has been the focus of much discussion

in macroeconomics generally. Note from (2.3) that the elasticity ofHt with respect to the real

wage, holding Ct constant, is 1/φ. The condition, “holding Ct constant”, could mean that

the elasticity refers to the response of Ht to a change in the real wage that is of very short

duration, so short that the household’s wealth - and, hence, consumption - is left unaffected.

Alternatively, the elasticity could refer to the response of Ht to a change in the real wage that

is associated with a lump sum transfer payment that keeps wealth unchanged. The debate

about φ centers on the interpretation of Ht. Under one interpretation, Ht represents the

amount of hours worked by a typical person in the labor force. With this interpretation, 1/φ

is the Frisch labor supply elasticity. This is perhaps the most straightforward interpretation

of 1/φ given our assumption that the economy is populated by identical households, in

which Ht is the labor effort of the typical household. An alternative interpretation of Ht

is that it represents a number of people, and that 1/φ measures the elasticity with which

marginal people substitute in and out of employment with a change in the wage. Under

this interpretation, 1/φ need not correspond to the labor supply elasticity of any particular

person. The two different interpretations of Ht give rise to very different views about the

appropriate value of φ.

There is an influential labor literature that estimates the Frisch labor supply elasticity

using household level data. The general finding is that, although the Frisch elasticity varies

somewhat across different types of people, on the whole the elasticities are very small. Some

have interpreted this to mean that only large values of φ (say, larger than unity) are con-

sistent with the data. Many macroeconomists accepted this interpretation initially, but this

presented them with a puzzle. Over the business cycle, one observes that employment fluc-

tuates a great deal more than real wages. It seemed puzzling that aggregate data appeared

to suggest high labor supply elasticities, while the micro data appeared to suggest low labor

supply elasticities. A consensus is now emerging according to which this ‘puzzle’ is in fact

a false puzzle. The idea is that the Frisch elasticity in the micro data and the labor supply

elasticity in the macro data represent different objects.

It is well known that much of the business cycle variation in employment reflects changes

in the quantity of people working, not in the number of hours worked by the average house-

hold. Beginning at least with the work of Rogerson (1988) and Hansen (1985), it has been

argued that even if the individual’s labor supply elasticity is zero over most values of the

wage, aggregate employment could nevertheless respond highly elastically to small changes

in the real wage. This can occur if there are household members who are just on the margin
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between working in the market and devoting their time to other activities. An example is a

spouse who is doing productive work in the home, and yet who might be tempted by a small

rise in the market wage to substitute into the market. Another example is teenagers who

may be close to the margin between pursuing additional education and working, who could

be induced to switch to working by a small rise in the wage. Finally, there is the elderly

person who might be induced by a small rise in the market wage to delay retirement. These

examples suggest that aggregate employment might fluctuate substantially in response to

small changes in the real wage, even if the individual household’s Frisch elasticity of labor

supply is zero over all values of the wage, except the one value that induces them to shift in

or out of the market.

The ideas in the previous paragraphs can be illustrated in our model. Such an illustration

obviously requires that households have several members. The realistic assumption is to

suppose that ‘several’ means 3 or 4, but this would embroil us in technical complications

which would take us away from the main idea. Instead, we adopt the technically convenient

assumption that the household has a large number of members, one for each of the points

on the line bounded by 0 and 1.5 In addition, we assume that a household member only

has the option to work full time or not at all. Their Frisch labor supply elasticity is zero for

most values of the wage. Let l ∈ [0, 1] index a particular member in the family. Suppose
this member enjoys the following utility if employed:

log (Ct)− lφ, φ > 0,

and the following utility if not employed:

log (Ct) .

Household members are ordered according to their degree of aversion to work. Those with

high values of l have a high aversion (for example, small children, and elderly or chronically

ill people) to work, and those with l near zero have very little aversion. We suppose that

household decisions are made on a utilitarian basis, in a way that maximizes the equally

weighted integral of utility across all household members. Under these circumstances, effi-

ciency dictates that all members receive the same level of consumption, whether employed or

not. In addition, if Ht members are to be employed, then those with 0 ≤ l ≤ Ht should work

and those with l > Ht should not. For a household with consumption, Ct, and employment,

Ht, utility is, after integrating over all l ∈ [0, 1] :

log (Ct)−
H1+φ

t

1 + φ
,

5Our approach is most similar to the approach of Gali (2010), though it also resembles the recent work
of Mulligan (2001) and Krusell, Mukoyama, Rogerson and Sahin (2008).
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which coincides with the period utility function in (2.1). Under this interpretation of the

utility function, (2.3) remains the relevant first order condition for labor. In this case, given

the wage,Wt/Pt, the household sends out a number of members, Ht, to work until the utility

cost of work for the marginal worker, Hφ
t , is equated to the corresponding utility benefit to

the household, (Wt/Pt) /Ct.

Note that under this interpretation of the utility function, Ht denotes a quantity of

workers and φ dictates the elasticity with which different members of the households enter

or leave employment in response to shocks. The case in which φ is large corresponds to the

case where household members differ relatively sharply in terms of their aversion to work.

In this case there are not many members with disutility of work close to that of the marginal

worker. As a result, a given change in the wage induces only a small change in employment.

If φ is very small, then there is a large number of household members close to indifferent

between working and not working, and so a small change in the real wage elicits a large labor

supply response.

Given that most of the business cycle variation in the labor input is in the form of

numbers of people employed, we think the most sensible interpretation of Ht is that it

measures numbers of people. As a result, φ is not to be interpreted as a Frisch elasticity,

which is in fact zero.

3. Monetary Policy Analysis With the Simple Model Without Cap-
ital

This section uses three examples to illustrate how monetary DSGE are used to think about

monetary policy. In the first two examples, we discuss the Taylor principle both in ‘normal

times’ and at times when optimism about the future triggers economic volatility. In each

case, we describe the rationale for the Taylor principle, as well as potential problems. The last

subsection examines the Ramsey optimal policy for our model. The first and third examples

show how the working capital channel can have important consequences for monetary policy.

3.1. Taylor Principle

A key objective of monetary policy is the maintenance of low and stable inflation. The

classic New Keynesian model defined by γ = 1 and ψ = 0 can be used to articulate the

risk that inflation expectations might become self-fulfilling unless the monetary authorities

adopt the appropriate monetary policy. The classic model can also be used to explain the

widespread consensus that ‘appropriate monetary’ policy means a monetary policy that

embeds the Taylor principle: a 1% rise in inflation should be met by a greater than 1% rise

in the nominal interest rate. This subsection explains how the classic New Keynesian model
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provides support for the Taylor principle. However, when we incorporate the assumption of

a working capital channel - particularly when the share of materials in gross output is as high

as it is in the data - the Taylor principle to become a source of instability. This is perhaps

not surprising. When the working capital channel is strong, if the monetary authority raises

the interest rate in response to rising inflation expectations, they will simply produce the

higher inflation that people expect.

It is convenient to summarize the linearized equations of our model here:

R̂∗t = Et
1

γ
μ̂z,t+1 (3.1)

π̂t = κ
h
γ (1 + φ) ĉt + αψR̂t

i
+ βEtπ̂t+1 (3.2)

ĉt = Et

h
ĉt+1 −

³
R̂t − π̂t+1 − R̂∗t

´i
(3.3)

R̂t = ρR̂t−1 + (1− ρ) [rππ̂t+1 + rcĉt] , (3.4)

where

κ =

¡
1− βξp

¢ ¡
1− ξp

¢
ξp

, αψ =
ψ

(1− ψ)β + ψ
.

The specification of the model is complete when we specify the law of motion for the exoge-

nous shocks. We do this in the following subsections as needed.

We begin by reviewing the case or the Taylor principle using the classic New Keynesian

model, with γ = 1, ψ = 0.We get to the heart of the argument using the deterministic version

of the model, in which R̂∗t ≡ 0. In addition, it is convenient to suppose that monetary policy
is characterized by ρ = rc = 0. Throughout, we adopt the presumption that the only valid

equilibria are paths for π̂t, R̂t and ĉt that converge to steady state, i.e., 0.6 Under these

circumstances, (3.2) and (3.3) can be solved forward as follows:

π̂t = κγ (1 + φ) ĉt + βκγ (1 + φ) ĉt+1 + β2κγ (1 + φ) ĉt+2 + ... (3.5)

and

ĉt = −
³
R̂t − π̂t+1

´
−
³
R̂t+1 − π̂t+2

´
−
³
R̂t+2 − π̂t+3

´
− ... (3.6)

6Although our presumption is standard, justifying it is harder than one might have thought. For example,
Benhabib, Schmitt-Grohe and Uribe (2002) have presented examples in which some explosive paths for the
linearized equilibrium conditions are symptomatic of perfectly sensible equilibria for the actual economy
underlying the linear approximations. In these cases, focusing on the non-explosive paths of the linearized
economy may be valid after all if we imagine that monetary policy is a Taylor rule with a particular escape
clause. The escape clause specifies that in the event the economy threatens to follow an explosive path, the
monetary authority commits to switch to a monetary policy of targetting the money growth rate. There are
examples of monetary models in which the escape clause monetary policy justifies the type of equilibrium
selection we adopt in the text (see Benhabib, Schmitt-Grohe and Uribe (2002), and Christiano and Rostagno
(2001) for further discussion). For a more recent debate about the validity of the equilibrium selection
adopted in the text, see McCallum (2009) and Cochrane (2009) and the references they cite.
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In (3.6) we have used the fact that in our setting a path converges to zero if, and only if,

it converges fast enough so that a sum like the one in (3.6) is well defined.7 Equation (3.5)

shows that inflation is a function of the present and future output gap. Equation (3.6) shows

that the current output gap is a function of the long term real interest rate (i.e., the sum on

the right of (3.6)) in the model.

Under the Taylor principle, the classic New Keynesian model implies that a rise in in-

flation expectations launches a sequence of events which ultimately leads to a moderation

in actual inflation. Seeing this moderation in actual inflation, people’s higher inflation ex-

pectations would quickly dissipate before they can be a source of economic instability. The

way this works is that the rise in the real rate of interest slows down spending, causing the

output gap shrink (see (3.6)). The fall in actual inflation occurs as the reduction in output

reduces pressure on resources and drives down the marginal cost of production (see (3.2)).

Strictly speaking, we have just described a rationale for the Taylor principle that is based on

learning (for a formal discussion, see McCallum (2009)). Under rational expectations, the

posited rise in inflation expectations would not occur in the first place if policy obeys the

Taylor principle.

A similar argument shows that if the monetary authority does not obey the Taylor

principle, i.e., rπ < 1, then a rise in inflation expectations can be self-fulfilling. This is not

surprising, since in this case the rise in expected inflation is associated with a fall in the

real interest rate. According to (3.6) this produces a rise in the output gap. By raising

marginal cost, the Phillips curve, (3.5), implies that actual inflation rises. Seeing higher

actual inflation, people’s higher inflation expectations are confirmed. In this way, with

rπ < 1 a rise in inflation expectations becomes self-fulfilling by triggering a boom in output

and actual inflation. It is easy to see that with rπ < 1 many equilibria are possible. A drop

in inflation expectations can cause a fall in output and inflation. Inflation expectations could

be random, causing random fluctuations between booms and recessions.8

In this way, the classic New Keynesian model has been used to articulate the idea that the

7The reason for this can be seen below, where we show that the solution to this equation is a linear
combination of terms like aλt. Such an expression converges to zero if, and only if, it is also summable.

8Clarida, Gali and Gertler (1999) argue that the high inflation of the 1970s in many countries can be
explained as reflecting the failure to respect the Taylor principle in the early 1970s. Christiano and Gust
(2000) criticize this argument on the ground that one did not observe the boom in employment in the 1970s
that the CGG analysis predicts. Christiano and Gust argue that even if one thought of the 1970s as also
a time of bad technology shocks (fuel costs and commodity prices soared then), the CGG analysis predicts
that employment should have boomed in the 1970s. Christiano and Gust present an alternative model, a
‘limited participation’ model, which has the same implications for the Taylor principle that the CGG model
has. However, the Christiano and Gust model has a very different implication for what happens to real
allocations in a self-fulfilling inflation episode. Because of the presence of an important working capital
channel in the Christiano and Gust model, the self-fullfilling inflation episode is associated with a recession
in output and employment. Thus, Christano and Gust conclude that the 1970s might well reflect the failure
to implement the Taylor principle, but only if the analysis is done in a model different from the CGG model.
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Taylor principle promotes stability, while absence of the Taylor principle makes the economy

vulnerable to fluctuations in self-fulfilling expectations.

The preceding results are particularly easy to establish formally under the assumption of

rational expectations. We continue to maintain the simplifying assumption, ρ = rx = 0. We

reduce the model to a single second order difference equation in inflation. Substitute out for

R̂t in (3.2) and (3.3) using (3.4). Then, solve (3.2) for ĉt and use this to substitute out for

ĉt in (3.3). These operations result in the following second order difference equation in π̂t :

π̂t + [κγ (1 + φ) (rπ − 1)− (καψrπ + β)− 1] π̂t+1 + (καψrπ + β) π̂t+2 = 0,

The general set of solutions to this difference equation can be written as follows:

π̂t = a0λ
t
1 + a1λ

t
2,

for arbitrary a0, a1. Here, λi, i = 1, 2, are the roots of the following second order polynomial:

1 + [κγ (1 + φ) (rπ − 1)− (καψrπ + β + 1)]λ+ (καψrπ + β)λ2 = 0.

Thus, there is a two dimensional space of solutions to the equilibrium conditions (i.e., one

for each possible value of a0 and a1). We continue to apply our presumption that among

these solutions, only the ones in which the variables converge to zero (i.e., to steady state)

correspond to equilibria. Thus, uniqueness of equilibrium requires that both λ1 and λ2 be

larger than unity in absolute value. In this case, the unique equilibrium is the solution

associated with a0 = a1 = 0. If one or both of λi, i = 1, 2 are less than unity in absolute

value, then there are many solutions to the equilibrium conditions that are equilibria. We

can think of these equilibria as corresponding to different, self-fulfilling, expectations.

The following result can be established for the classic New Keynesian model, with γ = 1

and αψ = 0. The model economy has a unique equilibrium if, and only if rπ > 1 (see, e.g.,

Bullard and Mitra (2002)). This is consistent with the intuition about the Taylor principle

discussed above.

We now re-examine the case for the Taylor principle when there is a working capital

channel. The reason the Taylor principle works in the classic New Keynesian model is that

a rise in the interest rate leads to a fall in inflation by curtailing aggregate spending. But,

with a working capital channel, αψ > 0, an increase in the interest rate has a second effect.

By raising marginal cost (see (3.2)), a rise in the interest rate places upward pressure on

inflation by raising marginal cost. If the working capital channel is strong enough, then

monetary policy with rπ > 1 may add fuel to the fire when inflation expectations rise. The

sharp rise in the nominal rate of interest in response to a rise in inflation expectations may

actually cause the inflation that people expected. In this way the Taylor principle could
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actually be destabilizing. Of course, for this to be true requires that the working capital

channel be strong enough. For a small enough working capital channel (i.e., small αψ) the

Taylor principle would still have the effect of inoculating the economy from destabilizing

fluctuations in inflation expectations.

Whether the presence of the working capital channel in fact overturns the Taylor principle

is a numerical question. We must assign values to the model parameters and investigate

whether one or both of λ1 and λ2 are less than unity in absolute value. If this is the case,

then the Taylor principle does not stabilize inflation expectations. Throughout, we set

β = 0.99, ξp = 0.75, rπ = 1.5.

The discount rate is 4 percent, at an annual rate and the value of ξp implies an average time

between price reoptimization of one year. In addition, monetary policy is characterized by

a strong commitment to the Taylor principle. Throughout, we set ρ = 0 and we consider

rc = 0 and rc = 0.1. We consider the latter value because it lies slightly above the upper

bound of the 95 percent probability interval associated with the posterior distribution for

this parameter in our estimation below. For robustness, we also consider a version of (3.4)

in which the monetary authority reacts to current inflation.

We do not have a strong prior about the value of φ (see section 2.3 above), so we consider

two values, φ = 1 and φ = 0.1. To have a sense of the appropriate value of γ, we follow Basu

(1995). He argues, using manufacturing data, that the share of materials in gross output is

roughly 1/2. Recall that the steady state of our model coincides with the solution to (2.23),

so that
i

c+ i
= 1− γ.

Thus, Basu’s empirical finding suggests a value for γ in a neighborhood of 1/2.9 The in-

strumental variables results in Ravenna and Walsh (2006) suggests that a value of ψ in a

neighborhood of unity is consistent with the data.

Figure 1 displays our results. The upper row of figures provides results for the case in

(3.4), in which the policy authority reacts to the one-quarter-ahead expectation of inflation,

Etπ̂t+1. The lower row of figures corresponds to the case where the policy maker responds

instead to current inflation, π̂t. The horizontal and vertical axes indicate a range of values for

γ and ψ, respectively. The grey areas correspond to the parameter values where one or both

of λi, i = 1, 2 are less than unity in absolute value. Technically, the steady state equilibrium

of the economy is said to be ‘indeterminate’ for parameterizations in the grey area. Intu-

itively, the grey area corresponds to parameterizations of our economy in which the Taylor

9Actually, this is a conservative estimate of γ. Had we not selected ν to extinguish monopoly power in
the steady state, our estimate of γ would have been lower. See Basu (1995) for more discussion of this point.
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principle does not stabilize inflation expectations. The white areas in the figures correspond

to parameterizations where the Taylor principle successfully stabilizes the economy.

Consider the upper two set of charts in Figure 1 first. Note that in each case, ψ = 0

and γ = 1 are points in the white area, consistent with the discussion above. However, for

very small positive values of ψ, we see that we are into the grey area. Moreover, this is

true regardless of the value of γ. For these parameterizations the aggressive response of the

interest rate to higher inflation expectations only produces the higher inflation that people

anticipate. We can see in the right two figures of the first row, that rc > 0 greatly reduces

the extent of the grey area. Still, for γ = 0.5 and ψ near unity we are still in the grey area

and the Taylor principle does not work.

Now consider the bottom row of graphs. Note that in all cases, if γ = 1 then we are always

in the white area. That is, for the economy to be vulnerable to self-fulfilling expectations,

it must not only be that there is a substantial working capital channel, but it must also be

that materials are a substantial fraction of gross output. The 2,2 graph shows that with

γ = 0.5, φ = 0.1 and ψ above roughly 0.6, we are in the grey area. When φ is substantially

higher, the 2,1 graph indicates the grey area is smaller. Note that with rc > 0, the grey area

has almost shrunk to zero, according to the 2,3 and 2,4 graphs.

We conclude from this analysis that in the presence of a working capital channel, sharply

raising the interest rate in response to higher inflation could actually be counterproductive.

This is more likely to be the case when the share of materials inputs in gross output is high.

When this is so, one cannot rely exclusively on the Taylor principle to ensure stable inflation

and output performance. In the example, responding strongly to the output gap could

restore stability. However, in practice the output gap is hard to measure and so presumably

responding to other variables that are correlated with the output gap is desirable. Of course,

this requires a more extended model than the one we have here. Still, we hope that the

discussion illustrates how DSGE models can help place structure on thinking about the

design of monetary policy.

3.2. Monetary Policy and Boom-Busts

In recent years, there has been extensive discussion about the interaction of monetary policy

and economic volatility, in particular, asset price volatility. Prior to the recent financial

turmoil, a consensus had developed that monetary policy should not actively seek to stabilize

asset prices. The view was that in any case, a serious commitment to inflation targeting,

one that implements the Taylor principle, would stabilize asset markets automatically.10

The idea is that an asset price boom is basically a demand boom, the presumption being

10See Bernanke and Gertler (2000).
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that the boom is driven by optimism about the future, and not primarily by current actual

developments. A boom that is driven by demand should - according to the conventional

wisdom - raise production costs and, hence, inflation. The monetary authority that reacts

vigorously to inflation then automatically raises interest rates and helps to stabilize asset

prices.

When this scenario is evaluated in the classic New Keynesian model, we find that the

boom is not necessarily associated with a rise in prices. In fact, if the optimism about the

future concerns the expectations about cost saving new technologies, forward-looking price

setters may actually reduce their prices. This is the finding of Christiano, Ilut, Motto and

Rostagno (2007), which we briefly summarize here.

To capture the notion of optimism about the future, suppose that the time series repre-

sentation of the log-level of technology is as follows:

log zt = ρz log zt−1 + ut, ut = εt + ξt−1, (3.7)

so that the steady state of zt is unity. In (3.7), ut is an iid shock, uncorrelated with past

log zt. The innovation in technology growth, ut, is the sum of two orthogonal processes, εt
and ξt−1. The time subscript on these two variables represents the date when they are known

to private agents. Thus, at time t− 1 agents come to know of a piece of ut, namely ξt−1. At
time t they learn the rest, εt. For example, the initial ‘news’ about ut, ξt−1, could in principle

be entirely false, as would be the case when εt = −ξt−1.
Substituting (3.7) into (3.1):

R̂∗t = Et [log zt+1 − log zt] = (ρz − 1) log zt + ξt, (3.8)

where γ = 1 since we now consider the classic New Keynesian model.11 Our system of

equilibrium conditions is (3.8) with (3.2), (3.3) and (3.4). We set αψ = 0 (i.e., no working

capital channel) and rc = ρ = 0. We adopt the following parameter values:

β = 0.99, φ = 1, rπ = 1.5, ρz = 0.9, ξp = 0.75.

We perform a simulation in which news arrives in period t that technology will jump one

percent in period t+ 1, i.e., ξt = 0.01. The value of εt is set to zero. The period t response

11To see why we replaced μ̂z,t+1 in (3.1) log zt+1 − log zt, note first

μ̂z,t =
μz,t − μz

μz
= μz,t − 1,

because in steady state μz ≡ zt/zt−1 = 1/1 = 1. Then,

1 + μ̂z,t = μz,t

Take the log of both sides and note, logμz,t = log
¡
1 + μ̂z,t

¢
' μ̂z,t. But, logμz,t = log zt − log zt−1.
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of hours worked is positive 1 percent. This rise is entirely inefficient because in the first best

equilibrium hours does not respond at all to a technology shock, whether it occurs in the

present or it is expected to occur in the future (see (2.23)). Interestingly, inflation falls in

period t by 10 basis points, at an annual rate.12 Current marginal cost does rise (see (2.29)),

but the expected future fall in marginal cost is why current inflation drops.

The efficient monetary policy sets R̂t = R̂∗t which, according to (??), means the interest
rate should rise when a positive signal about the economy occurs. A policy that applies the

Taylor principle in this example moves policy in exactly the wrong direction in response to

ξt. By responding to the fall in inflation, policy not only does not raise the interest rate

- as it should - but it actually reduces the interest rate in response to the fall in inflation.

By reducing the interest rate in the period of a positive signal about the future, policy over

stimulates the economy and thereby creates excessive volatility.

So, the classic New Keynesian model can be used to challenge the conventional wisdom

that an inflation-fighting central bank automatically moderates economic volatility. But, is

this just an abstract example without any relevance? In fact, the typical boom-bust episode

is characterized by low or falling inflation (see Adalid and Detken (2007)). For example,

during the US booms of the 1920s and the 1980s and 1990s, inflation was low. This fact

turns the conventional wisdom on its head and leads to a conclusion that matches that of

our numerical example: an inflation-fighting central bank amplifies boom/bust episodes.

A full evaluation of the ideas in this subsection requires a more elaborate model, prefer-

ably one with financial variables such as the stock market. In this way, one could assess the

impact on a broader set of variables in boom/bust episodes. In addition, one could evaluate

what other variables the monetary authority might look at in order to avoid contributing

to the type of volatility described in this example. We presume that it is not helpful to

simply say that the monetary authority should set R̂t = R̂∗t , because in practice this may

require more information than is actually available. Instead, the objective should be to find

variables that are correlated with R̂∗t , so that these may be included in the monetary policy

rule. For further discussion of these issues, see Christiano, Ilut, Motto and Rostagno (2007).

3.3. Ramsey Equilibrium

The previous two subsections studied the Taylor principle, once with and once without, the

working capital channel. Here we consider the working capital channel in a Ramsey optimal

equilibrium. This equilibrium is defined as the best equilibrium that is possible, given private

sector optimization and market clearing. We study the Ramsey equilibrium for three reasons.

First, we develop the result of Ravenna and Walsh (2006), that the working capital channel

12Because inflation is zero in steady state, π̂t = πt − 1. This was converted to annualized basis points by
multiplying by 40,000.
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introduces an interesting trade-off between inflation and output stabilization. By establishing

the existence of this conflict in the context of the Ramsey optimal policy, it is clear that

the conflict is not an artifact of the details of some particular policy rule. The trade-off

that the existence of the working capital channel creates is interesting because the classic

New Keynesian model has difficulty articulating such a trade-off. In practice, researchers

wanting to study a trade-off between inflation and output stabilization in the classic New

Keynesian model are forced to appeal to disturbances in λf , the degree of monopoly power.

These disturbances show up as an additive term in the Phillips curve, but are difficult to

motivate. With the working capital channel one in effect also obtains an additive term in

the Phillips curve (see (3.2)), but perhaps this way of introducing such a term has a more

appealing motivation.

A second reason for considering the Ramsey equilibrium is that it represents an interesting

benchmark for evaluating monetary policy rules. A third reason is that a version of the

Ramsey equilibrium corresponds to ‘flexible inflation targeting’, a policy applied at least

implicitly in many central banks and explicitly in some, such as the Swedish central bank.

Although it is beyond the scope of this paper to provide a full discussion of the use of

Ramsey equilibrium in the implementation of monetary policy, some key issues are addressed

here. For example, we provide intuition about the nature of temptations to deviate from

the Ramsey optimal policy that exist according to the New Keynesian model (the ‘time

inconsistency problem’). The model is capable of articulating the classic time inconsistency

problem in monetary economics, the one emphasized by Kydland and Prescott ( 1977) and

Barro and Gordon (1983a, 1983b). In addition, there is a time inconsistency problem that

specifically arises because of the assumed frictions in setting prices in the New Keynesian

model.

Typically, a tax subsidy is included among the policymaker’s instruments in a Ramsey

equilibrium. We show that the treatment of this subsidy is very important for the properties

of the Ramsey equilibrium. For example, the Ramsey equilibrium that obtains when there

are no restrictions on the way the tax subsidy is set is not only first best, but it is also time

consistent. If restrictions are placed on what the policy maker can do with the tax subsidy,

then the Ramsey equilibrium outcomes are no longer first best or time consistent. We discuss

these issues with the use of numerical examples. We also use the example to illustrate why

the New Keynesian model motivates price level targeting, as opposed to inflation targeting,

as a desirable objective for monetary policy.

3.3.1. Definition of the Ramsey Equilibrium

Recall that the private sector optimization and market clearing conditions in section 2.1

supply us with 11 equations in the 9 unknowns listed in (2.22). Thus, the system at this
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point is under-determined. There are many configurations of the variables in (2.22) which

satisfy the private sector equilibrium conditions. The Ramsey-optimal equilibrium is the

configuration of those variables that maximizes the utility of the representative household.

In Lagrangian form, the Ramsey equilibrium allocations solve:

max
ct,Ht,it,Rt,πt,p∗t ,K

f
t ,F

f
t ,νt

E0

∞X
t=0

βt{
"
log ct −

H1+φ
t

1 + φ

#
(3.9)

+λ1t
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φ
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γ

1− γ
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Ht

¸
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+
¡
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t

p∗t−1
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£
ct + it − p∗tH

γ
t i
1−γ
t

¤
}.

In (3.9) we have dropped two private sector equilibrium conditions by using (2.3) to substitute

out for Wt/Pt and (2.9) to substitute out for st. Also, we have written consumption and

materials input in scaled form using (2.24).

3.3.2. A Simplification of the Ramsey Equilibrium

At first sight, the Ramsey problem, (3.9), may appear formidable. However, on closer

inspection it turns out to be quite simple. This is because we can conjecture that the first

four restrictions are non-binding. To see this, note that we can think of the first, third and

fourth restrictions as simply defining Rt, F
f
t and Kf

t , respectively. Finally, we can think of

the second restriction as defining νt. Note that the block of variables, Rt, F
f
t , K

f
t and νt do

not enter the system anywhere else, and so our setting them does not restrict our ability to

optimize the welfare criterion. Formally, the conjecture that the first four equations are non-

binding on the problem can easily be verified ex post. Rewriting (3.9) using our conjecture,
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λ1,t = ... = λ4,t = 0 :

max
ct,Ht,it,πt,p∗t

E0

∞X
t=0

βt{
"
log (ct)−

H1+φ
t

1 + φ

#
(3.10)
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¡
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¤
}.

This problem is considerably less daunting than (3.9). Two observations deserve to be made

about this problem. First, note that the law of motion of the price distortions remains a

restriction on the system. This should not be surprising. In effect, the Ramsey equilibrium

problem has two degrees of freedom (i.e., two more variables than equilibrium conditions) and

this is not enough to make all intermediate good firm prices identical in period t, if there was

dispersion in the previous period, p∗t−1. The second observation is that under our conjecture,

all the equilibrium conditions with forward-looking variables disappear from the system. As

a result, we can expect that the Ramsey-optimal equilibrium is time-consistent. That is, the

solution to the problem resolved at some future date, t + j, is just the continuation of the

solution to the problem at date t, for all j > 0.

The first order conditions with respect to ct, Ht and it, respectively, are:

λ7,t =
1

ct
+ λ5,tH

φ
t (3.11)

0 = −Hφ
t + λ5,t

∙
ctφH

φ−1
t +

γ

1− γ

it
H2

t

¸
+ λ7,tγp

∗
tH

γ−1
t i1−γt (3.12)

0 = −λ5,t
γ

1− γ

1

Ht
+ λ7,t

£
(1− γ) p∗tH

γ
t i
−γ
t − 1

¤
(3.13)

The first order conditions with respect to πt and p∗t , respectively, are, after some rearranging,

πt
p∗t−1

=

⎛⎝1− ξpπ
1

λf−1
t

1− ξp

⎞⎠λf−1

(3.14)

λ6,t

(p∗t )
2 + λ7,tH

γ
t i
1−γ
t = βλ6,t+1

λf
λf − 1

ξp
π

λf
λf−1
t+1

(p∗t )
2 . (3.15)

The law of motion for p∗t , the equilibrium condition associated with λ6,t, is simplified by

substituting out for inflation using (3.14). Doing so we obtain, after some algebra,

p∗t =
h
1− ξp + ξp

¡
p∗t−1

¢ 1
λf−1

iλf−1
. (3.16)
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From (3.16), we see that in a Ramsey equilibrium price distortions are eliminated gradually

over time. Interestingly, during this convergence to steady state, price distortions are not

affected by the shocks included in our analysis. Also, equation (3.16) has a unique steady

state at unity, where it has a slope equal to ξp < 1. It follows that (3.16) is a (locally) stable

difference equation and that p∗t converges to unity from below. To see the implications for

inflation, substitute (3.16) into (3.14) to obtain:

πt =
p∗t−1
p∗t

. (3.17)

Thus, as the price distortions converge to unity from below, inflation converges to zero from

below too.

Given the solution for p∗t , it remains to solve for λ5,t, λ7,t, ct, Ht, it using (3.11), (3.12),

(3.13) and the restrictions associated with λ5,t and λ7,t:

λ5,t = 0, λ7,t =
1

ct
,

Ht = 1, it = [(1− γ) p∗t ]
1
γ , ct =

γ

1− γ
[(1− γ) p∗t ]

1
γ . (3.18)

Note that yet one more multiplier is zero. To verify that the restriction associated with λ5,t

is non-binding, simply verify that the restriction is satisfied by the indicated solutions for ct,

it and Ht.13

3.3.3. Properties of the Ramsey Equilibrium

There are several things worth noting about the Ramsey equilibrium. First, the allocations

in Ramsey equilibrium coincide with the solution to the following problem:

max
{ct,Ht,it}

E0

∞X
t=0

βt

"
log ct −

H1+φ
t

1 + φ

#

subject to

ct + it = p∗tH
γ
t i
1−γ
t .

That is, the allocations in the Ramsey equilibrium solve the planning problem for an econ-

omy in which p∗t is treated as an exogenous shock to technology which evolves according to

(3.16). The effects of monopoly power and the working capital channel are extinguished in

each period of the Ramsey equilibrium, and the misallocation of resources due to price dis-

persion disappears asymptotically. Second, a closely related observation is that the markup

13It is easily verified that there exist stochastic processes for Rt, K
f
t , F

f
t , νt such that the equilibrium

conditions associated with λi,t, i = 1, ..., 4 are satisfied.
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of marginal cost over the aggregate price level is unity when evaluated at the allocations in

the Ramsey equilibrium: µ
1

1− γ

¶1−γ Ã
ctH

φ
t

γ

!γ
1

p∗t
= 1. (3.19)

Third, it is instructive to examine the subsidy, νt, in a Ramsey equilibrium. Consider the

equilibrium condition associated with λ2,t :

Kf
t = λf (1− ψ + ψRt) (1− νt)

µ
1

1− γ

¶1−γ Ã
ctH

φ
t

γ

!γ

+ βξpEtπ

λf
λf−1
t+1 Kf

t+1 (3.20)

Combining (3.14) with the equilibrium condition on λ6,t, we obtain Kf
t = F f

t p
∗
t . Use this to

substitute out for Kf
t and Kf

t+1 in (3.20), divide both sides by p∗t and use (3.17), (3.19) to

obtain:

F f
t = λf (1− ψ + ψRt) (1− νt) + βξpEtπ

1
λf−1
t+1 F f

t+1.

This expression and the fact that the condition on λ3,t must be satisfied in a Ramsey equi-

librium implies:

λf (1− ψ + ψRt) (1− νt) = 1. (3.21)

Thus, in the Ramsey equilibrium, the subsidy extinguishes the working capital distortion as

well as the monopoly distortion.

A third observation about the Ramsey equilibrium is that its basic properties are very

sensitive to the treatment of the subsidy rate, νt, and to the presence of the working capital

channel. For example, if the subsidy rate is a constant that extinguishes monopoly power and

there is no working capital channel (i.e., ψ = 0), then our conjectures about the multipliers

remain valid. In this case, the Ramsey equilibrium is time consistent and our analytic

representation of the solution given in (3.16), (3.17) and (3.18) is correct. Suppose we

maintain the assumption that the subsidy rate is constant, but we introduce the working

capital channel by setting ψ > 0. Now our conjecture, λ2,t = 0, ceases to be valid and our the

analytic solution is not relevant. Moreover, the introduction of the working capital channel

causes the Ramsey equilibrium to be time inconsistent. This is because with the multipliers

non-zero, forward-looking variables enter the problem in a non-trivial way (see (3.9)). This

case is discussed in the next subsection.

3.3.4. Ramsey Equilibrium and Time Inconsistency

The previous section showed that when the subsidy rate is allowed to vary with time and

is chosen optimally, then the Ramsey equilibrium is time consistent. This feature of the

Ramsey equilibrium is convenient for expository purposes, but it is not robust. In practice,
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one expects the Ramsey equilibrium to be time inconsistent. In this subsection we briefly

discuss the sources of time inconsistency in the New Keynesian model.

We consider two examples. The first example illustrates a form of time inconsistency that

does not exist in the steady state of the Ramsey equilibrium, but which does exist along

a dynamic path. This form of time inconsistency is novel to the sticky price model. This

example also illustrates the sense in which the presence of the working capital channel creates

a trade off between output and inflation stabilization. The second example shows how the

classic time inconsistency problem in monetary economics emerges in the New Keynesian

model. Both examples are derived by placing different restrictions on the subsidy rate, νt.

Consider the case where the subsidy rate is restricted to be the constant value that

enforces (3.21) in steady state. That is, the subsidy rate is chosen to extinguish the effects

of monopoly power and working capital in the steady state of the Ramsey equilibrium. For

the example to be interesting we must suppose there is a nontrivial working capital channel,

ψ > 0, for otherwise the discussion of the previous section shows the Ramsey equilibrium

is time consistent. Because the steady state is efficient, there is nothing to be gained from

deviating and so the steady state allocations are time consistent. However, the equilibrium

out of steady state is not time consistent. In our numerical example, we compute the Ramsey

equilibrium at time t = 0, and we recompute it at date t = 1. As a benchmark, we include the

calculations for the case in which νt is variable and chosen optimally (i.e., (3.21) is satisfied

at each t). In all cases, we suppose that p∗−1 = 1 and we specify the law of motion of μz,t as

follows:

log
¡
μz,t
¢
= 0.5 log

¡
μz,t−1

¢
+ εzt ,

where εzt is a mean-zero, iid process. We set log(μz,−1) = 0, ε
z
0 = 0.01, ε

z
t = 0 for t > 0. Thus,

technology, zt, jumps in period t = 0 by 1 percent, and continues to rise until it asymptotes

at a level permanently higher by 2 percent. After the initial jump in technology, the state

of technology, log zt, follows a deterministic path up to its new, permanently higher value.

The other model parameters are set as follows:

ψ = 0.7, γ = 0.5, φ = 1, β = 0.99.

According to these parameter values, intermediate good firms must finance 70% of their

inputs in advance, a substantial fraction of their gross output is used by other firms as

materials inputs and the Frisch labor supply elasticity is unity.

Figure 2 displays our results. The upper left panel displays the response of log zt to the

shock, expressed in deviation from the constant path it would have followed in the absence

of the shock (the deviation is multiplied by 100 so that the results are in percent terms). The

other figures display the response of inflation, the nominal rate of interest and employment.

Inflation and the nominal rate of interest are expressed in net terms and multiplied by 40,000
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so that they are in annual, basis point terms. Employment is expressed as 100 times the log

deviation of employment from its constant steady state.

The line with solid circles displays the results based on the benchmark experiment, when

the subsidy rate is variable and chosen optimally.14 Inflation and hours worked do not deviate

from their steady state values, as our analytic solution implies. Note that the interest rate

rises substantially in response to the shock because this is necessary to reconcile households

with the prospective rise in consumption in Ramsey equilibrium. We then re-solved the

Ramsey equilibrium at t = 1 and found that hours worked, inflation and the interest rate

are the continuation of the equilibrium computed in period t = 0. This is a manifestation of

our finding that the Ramsey equilibrium with νt unrestricted is time consistent.

Now consider the case in which the subsidy rate is set to the constant value that extin-

guishes the monopoly and working capital distortions in steady state.15 The continuous line

in Figure 2 indicates the resulting restricted Ramsey equilibrium as of date t = 0. The thin

line with circles corresponds to the Ramsey equilibrium when that equilibrium is recomputed

at the start of t = 1. Consider the t = 0 equilibrium first. In this case, the interest rate rises

by a smaller amount than in the benchmark case. This is because the higher interest rate

from the benchmark Ramsey equilibrium now introduces a distortion through the working

capital channel. This distortion is the reason for the drop in employment.16 In addition, in-

flation rises in the t = 0 equilibrium because the rise in the rate of interest drives up marginal

cost. Interestingly, inflation returns to steady state from below in the t = 0 equilibrium. In

effect, inflation overshoots its steady state target of zero.

Consider the Ramsey equilibrium computed at time t = 1. Note that inflation is not as

14The computations were done using Dynare, version 4. We entered the equilibrium conditions associated
with λi,t, i = 1, ...,7 in (3.9), and the utility function. The Dynare command, Ramsey_policy, launches the
calculations. We set the subsidy rate to satisfy (3.21) for each t. This required replacing the relevant terms in
the constraint on λ2,t with unity. Dynare then computes the 8 first order necessary conditions for optimality
of the Ramsey problem. This gives a total of 15 equations, including the 7 constraints. These equations are
used to solve for the 15 endogenous variables, ct, Nt, it, Rt, πt, p

∗
t ,Kp,t, Fp,t, plus the 7 multipliers. Dynare

first computes the steady state values of these 15 variables, and then linearizes the 15 equations about
steady state. The results reported in Figure 1 are the solution to the linearized system of 15 equations. This
linearized system makes use of the second order derivatives of our model, because it involves linearization of
the Ramsey first order conditions. This is why, for example, our solution takes into account the cost of price
dispersion, even though the discussion below shows that to a first order approximation, p∗t is a constant.
15To implement this, we replace the expression in (3.9),

ε

ε− 1 (1− ψ + ψRt) (1− νt) ,

with
1− ψ + ψRt

1− ψ + ψR
,

where R denotes the steady state value of Rt.
16When ψ = 1, so that 100% of input costs must be financed in advance, then the impact effect of the

technology shock on employment is zero. Thereafter, employment falls.
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close to zero as it is projected to be in the t = 0 equilibrium. The reason for this inconsistency

in the Ramsey plan is simple. At time t = 0 the Ramsey equilibrium takes into account the

impact on t = 0 prices of the announcement about t = 1 inflation. At t = 0 it is desirable

to create the expectation that inflation will be close to zero in t = 1 in order to minimize

the welfare-reducing rise in the price level in period t = 0. This reasoning also explains

why inflation is projected overshoot its steady state. The commitment to eventually restore

the price level to roughly its pre-shock level helps to reduce the incentive of intermediate

good producers to change their price in period t = 0. At time t = 1 prices set at t = 0

represent ‘water under the bridge’, and they are no longer have any impact on the Ramsey

planner’s choice of inflation at time t = 1. This is why the plan as of period t = 1 is not the

continuation of the t = 0 plan.

Note that in the preceding discussion we have explained the sense in which the sticky

price model makes a case for price level targeting. The commitment to bring the price level

roughly back to its pre-shock level has the effect of reducing the impact of a shock on the

price level.17

Although the simple example in section 3.3 has a Ramsey equilibrium characterized

by time consistency, the previous discussion shows that this property is not robust. The

example can be used to illustrate additional reasons why the Ramsey equilibrium might

be time inconsistent. For example, suppose we drop the subsidy rate altogether, by setting

ν = 0. In this case, output and employment are below their first best levels in the steady state

of the Ramsey equilibrium. Since the nominal rate of interest now represents a distortion

in the steady state, the Ramsey equilibrium is characterized by a nominal rate of interest

that is somewhat less than 1/β in steady state. Because the household’s intertemporal

Euler equation must hold at all dates (see the condition associated with λ1,t in (3.9)), this

implies that inflation is negative in the Ramsey steady state. Because the Ramsey planner

now has only one degree of freedom (i.e., an excess of only one variable over the number

of equilibrium conditions) and several barriers to first best (i.e., monopoly power, working

capital channel and inflation) the Ramsey equilibrium necessarily represents a compromise.

The Ramsey planner who restarts the Ramsey plan in effect acquires another degree of

freedom for getting close to the first best allocations. In the case where output is below first

best in steady state, the Ramsey planner has an incentive to restart the plan with an interest

rate cut and a jump in inflation. Relative to the previously announced Ramsey plan, the

interest rate cut and inflation jump represent surprises. The Ramsey planner’s incentive to

implement the surprise is to move the economy closer to first best. This particular source of

17In the t = 0 Ramsey equilibrium, π0 = P0/P−1 = 1.0123, where P−1 denotes the price level in period
t = −1, the period before the shock. The cumulative product of the inflation rates, π0π1×·· ·×πt = Pt/P−1.
In the experiment, Pt/P−1 reaches a maximum of 1.0168 in t = 2 and then declines monotonically thereafter.
By period 40 Pt/P−1 has roughly converged, at 0.9986.
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time inconsistency is the classic one emphasized by Kydland and Prescott (1977) and Barro

and Gordon (1983a, 1983b) and many others.

Thus, in general the Ramsey equilibrium is time inconsistent. For the Ramsey equilib-

rium to actually occur in practice, policy makers must resist the temptation to deviate by

restarting the Ramsey plan and ignoring commitments made in previous periods.18 Devia-

tions from past promises would in practice soon be detected, in which case Ramsey would

cease to be the relevant equilibrium concept. The equilibrium concepts that are relevant to

the case where future commitments are not expected to be honored imply the possibility of

highly suboptimal outcomes.19

3.3.5. Working Capital and the Trade Off Between Output and Price Stabiliza-
tion

The previous discussion used the simulations displayed in Figure 2 to discuss the time in-

consistency problems that arise in New Keynesian models. We now use the two t = 0

simulations to describe Ravenna and Walsh (2006)’s point that the introduction of a work-

ing capital channel creates a trade-off between output and price stabilization. We are free

to think that in both simulations the subsidy rate, ν, is constant and extinguishes monopoly

power and any working capital channel in steady state. We can think of the line with solid

circles in Figure 2 as indicating the Ramsey equilibrium when there is no working capital

channel. In this case, the Ramsey optimal policy stabilizes both employment and inflation

in the wake of a shock to technology. There is evidently no trade-off in this case.

Now consider the continuous line, the one corresponding to the economy with the working

capital channel. Now, the rise in the interest rate that is meant to stop a surge in consumption

from expanding employment, drives inflation up. In addition, the rise in the interest rate

drives employment down because of the working capital channel.

4. Medium-Sized DSGE Model

We develop a version of the model in Christiano, Eichenbaum and Evans (2005) (CEE). We

describe the objectives and constraints of the agents in the model, and leave the derivation

of the equilibrium conditions to the appendix. Each feature of the model is motivated by our

desire to match inertial response of inflation to a monetary policy shock. However, when we

investigate the ability of that model to quantitatively match our estimate of that response, we

also investigate its ability to match estimated dynamic responses to two technology shocks.

18See Woodford (2003) for a discussion of the ‘timeless perspective’ in which a Ramsey equilibrium is
implemented in a way that honors past promises.
19See Barro and Gordon (1983a,1983b), Chari, Christiano and Eichenbaum (1998), and Albanesi, Chari

and Christiano (2003).
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4.1. Goods Production

An aggregate homogeneous good is produced using the technology, (2.5). The first order

condition of the representative, competitive producer of the homogeneous good is given by

(2.6). Substituting this first order condition back into (2.5) yields the restriction across

prices, (2.7). Each intermediate good, i ∈ (0, 1) , is produced by a monopolist who treats
(2.6) as its demand curve. The intermediate good producer treats the aggregate quantities,

Pt and Yt as exogenous.

We use a production function for intermediate good producers that is standard in the

literature. It does not use materials inputs, but it does use the services of capital, Ki,t :

Yi,t = (ztHi,t)
1−αKα

i,t − z+t ϕ. (4.1)

Here, zt is a technology shock whose logarithmic first difference has a positive mean and ϕ

denotes a fixed production cost. The economy has two sources of growth: the positive drift

in log (zt) and a positive drift in log (Ψt) , where Ψt is the state of an investment specific

technology shock discussed below. The object, z+t , in (4.1) is defined as follows:

z+t = Ψ
α

1−α
t zt.

Along a non-stochastic steady state growth path, Yt/z+t and Yi,t/z
+
t converge to constants.

The two shocks, zt and Ψt, are specified to be unit root processes in order to be consistent

with the assumptions we use in our VAR analysis to identify the dynamic response of the

economy to neutral and investment specific technology shocks. We adopt the following time

series representations for the shocks:

∆ log zt = μz + εzt , E (ε
z
t )
2 = (σz)

2 (4.2)

∆ logΨt = μψ + ρψ∆ logΨt−1 + εψt , E
³
εψt

´2
= (σψ)

2 . (4.3)

Our assumption that the neutral technology shock follows a random walk with drift matches

closely the finding in Smets and Wouters (2007) who estimate log zt to be highly autocorre-

lated. The direct empirical analysis of Prescott (1986) also supports the notion that log zt is

a random walk with drift. Finally, Fernald (2009) constructs a direct estimate of total factor

productivity growth for the business sector. The first order autorcorrelation of quarterly

observations covering the period 1947Q2 to 2009Q3 is 0.0034, consistent with the idea of a

random walk.

We assume that there is no entry or exit by intermediate good producers. The no entry

assumption would be implausible if firms enjoyed large and persistent profits. The fixed cost

in (4.1) is introduced to minimize the incentive to enter. We set ϕ so that intermediate good

producer profits are zero in steady state. This requires that the fixed cost grows at the same
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rate as the growth rate of economic output, and this is why ϕ is multiplied by z+t in (4.1). A

potential empirical advantage of including fixed costs of production is that, by introducing

some increasing returns to scale, the model can in principle account for evidence that labor

productivity rises in the wake of a positive monetary policy shock.

In (4.1), Hi,t denotes homogeneous labor services hired by the ith intermediate good

producer. Firms must borrow the wage bill, so that one unit of labor costs is given by

WtRt. (4.4)

Here, Wt denotes the aggregate wage rate and Rt denotes the gross nominal interest rate on

working capital loans. The assumption that firms require working capital was introduced by

CEE as a way to help dampen the rise in inflation after an expansionary shock to monetary

policy. An expansionary shock to monetary policy drives Rt down and - other things the

same - this reduces firmmarginal cost. Inflation is dampened because marginal cost is the key

input into firms’ price-setting decision. Indirect evidence consistent with the working capital

assumption includes the frequently-found VAR-based results, suggesting that inflation drops

for a little while after a positive monetary policy shock. It is hard to think of an alternative

to the working capital assumption to explain this evidence, apart from the possibility that

the estimated response reflects some kind of econometric specification error.20

Another motivation for treating interest rates as part of the cost of production has to

do with the ‘dis-inflationary boom’ critique made by Ball (1994) of models that do not

include interest rates in costs. Ball’s critique focuses on the Phillips curve in (2.26), which

we reproduce here for convenience:

π̂t = βEtπ̂t+1 + κŝt,

where π̂t and ŝt denote inflation and marginal cost, respectively. Also, κ > 0 is a reduced

form parameter and β is slightly less than unity. According to the Phillips curve, if the

monetary authority announces it will fight inflation by strategies which (plausibly) bring

down future inflation more than present inflation, then ŝt must jump. In simple models ŝt
is directly related to the volume of output (see, e.g., (2.29)). High output requires more

intense utilization of scare resources, their price goes up, driving up marginal cost, ŝt. Ball

criticized theories that do not include the interest rate in marginal cost on the grounds that

we do not observe booms during disinflations. Including the interest rate in marginal cost

potentially avoids the Ball critique because the high ŝt may simply reflect the high interest

rate that corresponds to the disinflationary policy, and not higher output.

20This possibility was suggested by Sims (1992) and explored further in Christiano, Eichenbaum and Evans
(1999).
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We adopt the Calvo model of price frictions. With probability ξp, the intermediate good

firm cannot reoptimize its price, in which case it is assumed to set its price according to the

following rule:21

Pi,t = πPi,t−1. (4.5)

Note that in steady state, firms that do not optimize price raise prices at the general rate

of inflation. Firms that do optimize price in a steady state growth path choose to also raise

their price at the steady state rate of inflation. This is a key reason why all firms’ prices are

the same in the steady state of the model. According to the discussion near (2.25), the fact

that we analyze the first order approximation of DSGE model in a neighborhood of steady

state means that we can impose the analog of p∗t = 1.

With probability 1− ξp the intermediate good firm can reoptimize its price. Apart from

the fixed cost, the ith intermediate good producer’s profits are the analog of (2.11):

Et

∞X
j=0

βjυt+j [Pi,t+jYi,t+j − st+jPt+jYi,t+j] ,

where st denotes the marginal cost of production, denominated in units of the homogeneous

good. The object, st, is a function only of the costs of capital and labor, and is described

in Appendix C. Marginal cost is independent of the level of Yi,t because of the linear ho-

mogeneity of the first expression on the right of (4.1). The first order necessary conditions

associated with this optimization problem are reported in Appendix E.

Goods market clearing dictates that the homogeneous output good is allocated among

alternative uses as follows:

Yt = Gt + Ct + Ĩt. (4.6)

Here, Ct denotes household consumption, Gt denotes exogenous government consumption

and Ĩt is a homogenous investment good which is defined as follows:

Ĩt =
1

Ψt

¡
It + a (ut) K̄t

¢
. (4.7)

The investment goods, It, are used by households to add to the physical stock of capital,

K̄t.
22 The remaining investment goods are used to cover maintenance costs, a (ut) K̄t, arising

from capital utilization, ut. The cost function, a (·) , is increasing and convex, and has the
property that in steady state, ut = 1 and a (1) = 0. The relationship between the utilization

of capital, ut, capital services, Kt, and the physical stock of capital, K̄t, is as follows:

Kt = utK̄t.

21Equation (4.5) excludes the possibility that firms index to past inflation. We discuss the reason for this
specification in section 6.2.2 below.
22The notation, It, used here should not be confused with materials inputs in section . Our medium-sized

DSGE model does not include materials inputs.
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The investment and capital utilization decisions are discussed in section 4.2. See section 4.4

below for the functional form of the capital utilization cost cost function. Finally, Ψt in (4.7)

denotes the unit root investment specific technology shock in (4.3).

4.2. Households

4.2.1. Preferences

There is a continuum of households indexed by j ∈ (0, 1) . The jth household has the following
preferences:

E0

∞X
t=0

βt

"
ln (Ct − bCt−1)−AL

(hj,t+i)
1+φ

1 + φ

#
, AL, φ > 0, β ∈ (0, 1) . (4.8)

Here, hj,t denotes the quantity of the jth type of labor service supplied. The jth household

is the sole supplier of this type of labor service, which is imperfectly substitutable with the

ith household’s labor service, for i 6= j.We discuss the household’s participation in the labor

market in the next subsection. In (4.8), Ct and Ct−1 denote the jth household’s consumption

at dates t and t− 1, respectively. As explained below, it is the presence of the appropriate
insurance markets which guarantees that individual household consumption is independent

of j ∈ (0, 1) .
The presence of b > 0 in (4.8) is motivated by VAR-based evidence like that displayed

below, which suggests that a positive monetary policy triggers (i) a hump-shape response in

consumption and (ii) a persistent reduction in the real rate of interest.23 With b = 0 and a

utility function separable in labor and consumption like the one above, (i) and (ii) are difficult

to reconcile. A positive monetary policy shock that triggers an increase in expected future

consumption would be associated with rise in the real rate of interest, not a fall. Alternatively,

a fall in the real interest rate would cause people to rearrange consumption intertemporally, so

that consumption is relatively high right after the monetary shock and low later. Intuitively,

one can reconcile (i) and (ii) by supposing the marginal utility of consumption is inversely

proportional not to the level of consumption, but to its derivative. To see this, it is useful

to recall the familiar intertemporal Euler equation implied by household optimization (see,

e.g., (2.4)):

Etβ
uc,t+1
uc,t

Rt

πt+1
= 1.

Here, uc,t denotes the marginal utility of consumption at time t. From this expression, we

see that a low Rt/πt+1 tends to produce a high uc,t+1/uc,t, i.e., a rising trajectory for the

marginal utility of consumption. This illustrates the problematic implication of the model

when uc,t is inversely proportional to Ct as in (4.8) with b = 0. To fix this implication we

23The intuition in this paragraph was originates with Fuhrer (2000).
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need a model change which has the property that a rising uc,t path implies hump-shape

consumption. A hump-shaped consumption path corresponds to a scenario in which the

slope of the consumption path is falling, suggesting that (i) and (ii) can be reconciled if

uc,t is proportional to the slope of consumption. The notion that marginal utility is inversely

proportional to the slope of consumption corresponds loosely to b > 0.24 The fact that (i) and

(ii) can be reconciled with the assumption of habit persistence is of special interest, because

there is evidence from other places that also favors the assumption of habit persistence, for

example in asset pricing (see, for example, Constantinedes (1990) and Boldrin, Christiano

and Fisher (2001)) and growth (see Carroll et al. (1997, 2000)). In addition, there may be

a solid foundation in psychology for this specification of preferences.25

The logic associated with the intertemporal Euler equation above suggests that there

are other ways to reconcile (i) and (ii). For example, Guerron-Quintana (2008) shows that

non-separability between consumption and labor in (4.8) can help reconcile (i) and (ii). He

points out that if the marginal utility of consumption is an increasing function of labor

and the model predicts that employment rises with a hump shape after a positive monetary

injection, then it is possible that consumption itself rises with a hump-shape.

4.2.2. Wage Setting by Households

The model incorporates Calvo-style wage setting frictions along the lines spelled out in

Erceg, Henderson and Levin (2000). Because wages are an important component of costs,

wage setting frictions help slow the response of inflation to a monetary policy shock. As

in the case of prices, wage setting frictions require that there be market power. To make

sure there is not too much market power, we follow Erceg, Henderson and Levin (2000) in

adopting the Dixit-Stiglitz type framework used in the context of price-setting. The many

households with specialized labor inputs, hj,t in (4.8) correspond to the many intermediate

good firms producing specialized inputs.

24In particular, suppose first that lagged consumption in (4.8) represents aggregate, economy wide con-
sumption and b > 0. This corresponds to the so-called ‘external habit’ case, where it is the lagged consumption
of others that enters utility. In that case, the marginal utility of houeshold Ct is 1/ (Ct − bCt−1) , which
corresponds to the inverse of the slope of the consumption path, at least if b is large enough. In our model
we think of Ct−1 as corresponding to the household’s own lagged consumption (that’s why we use the same
notation for current and lagged consumption), the so-called ‘internal habit’ case. In this case, the marginal
utility of Ct also involves future terms, in addition to the inverse of the of the slope of consumption from
t = 1 to t. The intuition described in the text, which implicitly assumed external habit, also applies roughly
to the external habit case that we consider.
25Anyone who has gone swimming has experienced the psychological aspect of habit persistence. It is

usually very hard at first to jump into the water because it seems so cold. The swimmer who jumps (or is
pushed!) into the water after much procrastenation initially experiences a tremendous shock with the sudden
drop in temperature. However, after only a few minutes the new, lower temperature is perfectly comfortable.
In this way, the lagged temperature seems to influence one’s experience of current temperature, as in habit
persistence.
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We suppose that, with probability 1 − ξw, the j
th worker is able to reoptimize its wage

and with probability ξw that worker sets Wj,t according to the following rule:

Wj,t+1 = π̃w,t+1Wj,t (4.9)

π̃w,t+1 = πκwt π(1−κw)μz+, (4.10)

where κw ∈ (0, 1) . Note that in steady state, non-optimizing workers raise their real wage at
the rate of growth of the economy. Because optimizing workers also do this in steady state,

it follows that in the steady state, the wage of each type of worker is the same.

To understand the problem of the 1 − ξw households which have the opportunity to

reoptimize their wage, it is useful to understand the source of labor demand. We suppose that

the labor power hired by intermediate good firms is homogeneous labor that is ‘produced’ by

competitive labor contractors. Labor contractors produce homogeneous labor by aggregating

the different types of specialized labor, j ∈ (0, 1) , as follows:

Ht =

∙Z 1

0

(ht,j)
1
λw dj

¸λw
, 1 ≤ λw <∞. (4.11)

Labor contractors take the wage rate of Ht and ht,j as given and equal to Wt and Wt,j,

respectively. Profit maximization by labor contractors leads to the following first order

necessary condition:

Wj,t =Wt

µ
Ht

ht,j

¶λw−1
λw

. (4.12)

Equation (4.12) is the demand curve for the jth household’s type of labor. We assume that

this demand curve must be satisfied at each point in time, whether or not the household has

the opportunity to reoptimize its wage. In considering (4.12), the jth household correctly

treats Ht and Wt as given and beyond its control.26

In principle, the idiosyncratic experiences of individual households will, over time, cause

them to have different wealth holdings and therefore also different levels of consumption.

Under these circumstances, aggregate economic outcomes may be dependent on the distrib-

ution of wealth across households. If so, then the distribution of wealth and the law of motion

of that distribution must be solved for as part of the solution of the model. In practice, it

is probably the case that solving a model of the size considered in this paper is infeasible

when there is non-trivial heterogeneity among households. For this reason, we follow Erceg,

Henderson and Levin (2000) in adopting the assumption that there are insurance markets on

the realization of the Calvo uncertainty determining whether the household can or cannot

adjust its wage.

26Substituting out for ht,j in (4.11) using (4.12) we obtain an expression relating Wt to Wj,t for j ∈ (0, 1)
that is analogous to (2.7).
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It is possible, however, that the heterogeneity induced by idiosyncratic uncertainty in the

setting of wages may only have a negligible impact on aggregate outcomes. This possibility is

suggested by the recent literature on versions of our model in which intermediate good firms

have a state variable, such as the capital stock or a stock of employment.27 In these models,

idiosyncratic uncertainty about the timing of price reoptimization gives rise to a distribution

across firms of their state variable. In principle, this matters for aggregate outcomes in

the same way that idiosyncratic uncertainty about the timing of wage reoptimization on

the part of households might matter. In the context of intermediate good firms, Woodford

(2004) has shown that as long as (i) the variables in a stochastic equilibrium are not too far

from their value in non-stochastic steady state and (ii) agents in the non-stochastic steady

state are identical, then standard linearization methods can be applied and the details of

the distribution of firms by their state variable do not matter for economic aggregates.28

The intuition is simple. Condition (i) guarantees that individual firm decision rules are well

approximated by linearizing about the steady state and condition (ii) guarantees that all

those decision rules have the same intercept and slope coefficients. To understand how this

guarantees that the details of the microeconomic distribution of state variables does not

matter, consider the old-fashioned Keynesian consumption function:

C = α+ βY,

where C denotes consumption and Y denotes household income. In reality, different house-

holds have different levels of income and in principle poor households have different β’s than

rich ones. If this were the case, then a simple relationship like the one above relating aggre-

gate consumption to aggregate income would not exist: to predict C one would have to know

not only aggregate Y, but also how it is distributed among rich and poor people. However,

if everyone - poor and rich alike - all had consumption functions with the same slope and

intercept terms, then aggregate consumption would be determined from aggregate income

as in the old-fashioned Keynesian consumption function. This insight has been applied with

success to models in which firms have idiosyncratic state variables, and it may also work in

models like the present one in which households have different wealth levels because of the

effects of idiosyncratic realizations of the ability to set wages. A challenge for the approach

would be to ensure condition (i). This requires that the model incorporate forces that pull

the distribution of wealth across households back together after a disturbance has pulled it

apart.

27See ACEL and Thomas (2009).
28A write-up of the method in a simplified model appears in Christiano (2004). An application in a

medium-scaled model with size approximating the size of our model appears in ACEL. See also Sveen and
Weinke (2005) for an alternative strategy for solving a model with firm-specific factors. For another study
that uses the assumption of firm-specific capital, see de Walque, Smets and Wouters (2006).
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4.2.3. Accumulation of Capital

The household owns the economy’s physical stock of capital, sets the utilization rate of capital

and rents the services of capital in a competitive market. The household accumulates capital

using the following technology:

K̄t+1 = (1− δ) K̄t + F (It, It−1) +∆t, (4.13)

where ∆t denotes physical capital purchased in a market with other households. Since all

households are the same in terms of capital accumulation decisions, ∆t = 0 in equilibrium.

We nevertheless include ∆t so that we can assign a price to installed capital. In (4.13),

δ ∈ (0, 1) and we use the specification suggested in CEE:

F (It, It−1) =

µ
1− S

µ
It
It−1

¶¶
It, (4.14)

where the functional form, S, that we use is described in section 4.4. In (4.14), S = S0 = 0

and S00 > 0 along a nonstochastic steady state growth path.

Let PtPk0,t denote the nominal market price of ∆t. For each unit of K̄t+1 acquired in

period t, the household receives Xk
t+1 in net cash payments in period t+ 1 :

Xk
t+1 = ut+1Pt+1r

k
t+1 −

Pt+1

Ψt+1
a(ut+1). (4.15)

The first term is the gross nominal period t + 1 rental income from a unit of K̄t+1. The

second term represents the cost of capital utilization, a(ut+1)Pt+1/Ψt+1. Here, Pt+1/Ψt+1 is

the nominal price of the investment goods absorbed by capital utilization. That Pt+1/Ψt+1

is the equilibrium market price of investment goods follows from the technology specified in

(4.6) and (4.7), and the assumption that investment goods are produced from homogeneous

output goods by competitive firms.

The introduction of variable capital utilization is motivated by a desire to explain the

slow response of inflation to a monetary policy shock. In the baseline model, prices are

heavily influenced by costs. These in turn are influenced by the elasticity of the factors of

production. If factors can be rapidly expanded with a small rise in cost, then inflation will

not rise much after a monetary policy shock. Allowing for variable capital utilization is a

way to make the services of capital elastic. If there is very little curvature in the a function,

then households are able to expand capital services without much increase in cost.

The form of the investment adjustment costs in (4.13) is motivated by a desire to re-

produce VAR-based evidence that investment has a hump-shaped response to a monetary

policy shock. Alternative specifications include F ≡ It and

F = It −
S00

2

µ
It
Kt
− δ

¶2
Kt. (4.16)
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Specification (4.16) has a long history in macroeconomics, and has been in use since at least

Lucas and Prescott (1971). To understand why DSGE models generally use the adjustment

cost specification in (4.14) rather than (4.16), it is useful to define the rate of return on

investment:

Rk
t+1 =

xkt+1 +

∙
1− δ + S00

³
It+1
Kt+1
− δ
´

It+1
Kt+1
− S00

2

³
It+1
Kt+1
− δ
´2¸

Pk0,t+1

Pk0,t
. (4.17)

The numerator is the one-period payoff from an extra unit of K̄t+1, and the denominator is

the corresponding cost, both in consumption units. In (4.17), xkt+1 ≡ Xk
t+1/Pt+1 denotes the

earnings net of costs. The term in square brackets is the quantity of additional K̄t+2 made

possible by the additional unit of K̄t+1. This is composed of the undepreciated part of K̄t+1

left over after production in period t+1, plus the impact of K̄t+1 on K̄t+2 via the adjustment

costs. The object in square brackets is converted to consumption units using Pk0,t+1, which

is the market price of K̄t+2 denominated in consumption goods. Finally, the denominator is

the price of the extra unit of K̄t+1.

The price of extra capital, in competitive markets corresponds to the marginal cost of

production. Thus,

Pk0,t = − dCt

dK̄t+1

= −dCt

dIt
× dIt

dK̄t+1

=
1

Ψt

"
1

dK̄t+1

dIt

#
=
1

Ψt

(
1 F = I
1

1−S00× It
Kt
−δ

F in (4.16) . (4.18)

The derivatives in the first line correspond to marginal rates of technical transformation. The

marginal rate of technical transformation between consumption and investment is implicit in

(4.6) and (4.7). The marginal rate of technical transformation between It and K̄t+1 is given

by the capital accumulation equation. The relation in the second line of (4.18) is referred to

as ‘Tobin’s q’ relation, where Tobin’s q here corresponds to ΨtPk0,t. This is the market value

of capital divided by the price of investment goods. Here, q can differ from unity due to the

investment adjustment costs.

We are now in a position to convey the intuition about why DSGE models have generally

abandoned the specification in (4.16) in favor of (4.13). The key reason has to do with

VAR-based evidence that suggests the real interest rate falls persistently after a positive

monetary policy shock, while investment responds in a hump-shaped pattern. Any model

that is capable of producing this type of response will have the property that the real return

on capital, (4.17) - for arbitrage reasons - also falls after an expansionary monetary policy

shock. Suppose, to begin, that S00 = 0, so that there are no adjustment costs at all and

Pk0,t = 1. In this case, the only component in Rk
t that can fall is x

k
t+1, which is dominated
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by the marginal product of capital. That is, approximately, the rate of return on capital is:

Kα−1
t+1 H

1−α
t+1 + 1− δ.

In steady state this object is 1/β (ignoring growth), which is roughly 1.03 in annual terms.

At the same time, the object, 1− δ, is roughly 0.9 in annual terms, so that the endogenous

part of the rate of return of capital is a very small part of that rate of return. As a result, any

given drop in the return on capital requires a very large percentage drop in the endogenous

part, Kα−1
t+1 H

1−α
t+1 . An expansion in investment can accomplish this, but it has to be a very

substantial surge. To see this, note that the endogenous part of the rate of return is not

only small, but the capital stock receives a weight substantially less than unity in that

expression. Moreover, a model that successfully reproduces the VAR-based evidence that

employment rises after a positive monetary policy implies that hours worked rises. This

pushes the endogenous component up, increasing the burden on the capital stock to bring

down the rate of return on investment. For these reasons, models without adjustment costs

generally imply a counterfactually strong surge in investment in the wake of a positive shock

to monetary policy.

With S00 > 0 the endogenous component of the rate of return on capital is much larger.

However, in practice models that adopt the adjustment cost specification, (4.16), generally

imply that the biggest investment response occurs in the period of the shock, and not later.

To gain intuition into why this is so, suppose the contrary: that investment does exhibit a

hump-shape response in investment. Equation (4.18) implies a similar hump-shape pattern

in the price of capital, Pk0,t.
29 This is because that Pk0,t is primarily determined by the con-

temporaneous flow of investment. So, under our supposition about the investment response,

a positive the monetary policy shock generates a rise in Pk0,t+1/Pk0,t over at least several

periods in the future. According to (4.17), this creates the expectation of future capital

gains, Pk0,t+1/Pk0,t > 1 and increases the immediate response of the rate of return on capi-

tal. Thus, households would be induced to substitute away from a hump-shaped response,

towards one in which the immediate response is much stronger. In practice, this means that

in equilibrium, the biggest response of investment occurs in the period of the shock, with

later responses converging to zero.

The adjustment costs in (4.14) do have the implication that investment responds in a

hump-shaped manner. The reason is (4.14)’s implication that a quick rise in investment

from previous levels is expensive.

29Note from (4.18) that the price of capital increases as investment rises above its level in steady state,
which is the level required to just meet the depreciation in the capital stock. Our assertion that the price of
capital follows the same hump-shaped pattern as investment after a positive monetary policy shock reflects
our implicit assumption tht the shock occurs when the economy is in a steady state. This will be true on
average, but not at each date.
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There are other reasons to take the specification in (4.14) seriously. Lucca (2006) and

Matsuyama (1984) have described interesting theoretical foundations which produce (4.14)

as a reduced form. For example, in Matsuyama, shifting production between goods and

capital involves a learning by doing process, which makes quick movements in either direction

expensive. Also, Matsuyama explains how the abundance of empirical evidence that appears

to reject (4.16) may be consistent with (4.14). Consistent with (4.14), Topel and Rosen

(1988) argues that data on housing construction cannot be understood without using a cost

function that involves the change in the flow of housing construction.

4.2.4. Household Optimization Problem

The jth household’s period t budget constraint is as follows:

Pt

µ
Ct +

1

Ψt
It

¶
+Bt+1 + PtPk0,t∆t ≤Wt,jht,jdj +Xk

t K̄t +Rt−1Bt + ajt (4.19)

where Wt,j represents the wage earned by the jth household, Bt+1 denotes the quantity of

risk-free bonds purchased by the household, Rt denotes the gross nominal interest rate on

bonds purchased in period t− 1 which pay off in period t, and ajt denotes the payments and
receipts associated with the insurance on the timing of wage reoptimization. The household’s

problem is to select sequences,
©
Ct, It,∆t,Wt,j, Bt+1, K̄t+1

ª
, to maximize (4.8) subject to

(4.12), (4.9), (4.10), (4.13), (4.15), (4.19) and the mechanism determining when wages can

be reoptimized.

4.3. Fiscal and Monetary Authorities, and Equilibrium

We suppose that monetary policy follows a Taylor rule of the following form:

log

µ
Rt

R

¶
= ρR log

µ
Rt−1

R

¶
+ (1− ρR) [rπ log

³πt+1
π

´
+ ry log

µ
gdpt
gdp

¶
] + εR,t, (4.20)

where εR,t denotes an iid shock to monetary policy. As in CEE and ACEL, we assume that

the period t realization of εR,t is not included in the period t information set of the agents in

our model. This ensures that our model satisfies the restrictions used in the VAR analysis to

identify a monetary policy shock. In (4.20), gdpt denotes scaled real GDP defined as follows:

gdpt =
Gt + Ct + It

z+t
. (4.21)

In (4.21), gdp denotes the nonstochastic steady state value of gdpt andGt denotes government

consumption. We adopt the model of government consumption suggested in Christiano and

Eichenbaum (1992):

Gt = gz+t .
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In principle, g could be a random variable, though our focus in this paper is just on monetary

policy and technology shocks. So, we set g to a constant. Lump-sum transfers are assumed

to balance the government budget.

An equilibrium is a stochastic process for the prices and quantities which has the property

that the household and firm problems are satisfied, and goods and labor markets clear.

4.4. Adjustment Cost Functions

We adopt the following functional forms. The capacity utilization cost function is:

a(u) = 0.5bσau
2 + b (1− σa) u+ b ((σa/2)− 1) , (4.22)

where b is selected so that a (1) = a0 (1) = 0 in steady state and σa is a parameter that

controls the curvature of the cost function. The closer σa is to zero, the less curvature there

is and the easier it is to change utilization. The investment adjustment cost function takes

the following form:

S (xt) =
1

2

n
exp

h√
S00 (xt − μz+μΨ)

i
+ exp

h
−
√
S00 (xt − μz+μΨ)

i
− 2
o
, (4.23)

= 0, x = μz+μΨ.

where xt = It/It−1 and μz+μΨ is the growth rate of investment in steady state. With this

adjustment cost function, S (μz+μΨ) = S0 (μz+μΨ) = 0. Also, S
00 > 0 is a parameter having

the property that it is the second derivative of S (xt) evaluated at xt = μz+μΨ. Because of

the nature of the above adjustment cost functions, the curvature parameters have no impact

on the model’s steady state.

5. Estimation Strategy

Our estimation strategy is a Bayesian version of the two-step impulse response matching

approach applied by Rotemberg and Woodford (1997) and CEE. We begin with a discussion

of the two steps. After that, we discuss the computation of a particular weighting matrix

used in the analysis.

5.1. VAR Step

We estimate the dynamic responses of a set of aggregate variables to three shocks, using

standard vector autoregression methods. The three shocks are the monetary policy shock,

the innovation to the permanent technology shock, zt, and the innovation to the investment

specific technology shock, Ψt. The contemporaneous and 14 lagged responses to each of

N = 9 macroeconomic variables to the three shocks are stacked in a vector, ψ̂. These
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macroeconomic variables are a subset of the variables that appear in the VAR. The additional

variables in our VAR pertain to the labor market. We use this augmented VAR in order to

facilitate comparison between the analysis in this manuscript and in other research of ours

which integrates labor market frictions into the monetary DSGE model.30 The Yt vector of

variables in the VAR is:

Yt|{z}
14×1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆ ln(relative price of investmentt)
∆ ln(realGDPt/hourst)
∆ ln(GDP deflatort)
unemployment ratet
capacity utilizationt

ln(hourst)
ln(realGDPt/hourst)− ln(Wt/Pt)
ln(nominal Ct/nominal GDPt)
ln(nominal It/nominal GDPt)

vacanciest
job separation ratet
job finding ratet

log (hourst/labor forcet)
Federal Funds Ratet

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.1)

An extensive general review of identification in VAR’s appears in Christiano, Eichenbaum

and Evans (1999). The specific technical details of how we simultaneously identify the

responses to all three structural shocks in our model appear in ACEL. We estimate a two-lag

VAR using data that are quarterly and seasonally adjusted and cover the period 1951Q1 to

2008Q4. Our identification assumptions are as follows. The only variable that the monetary

policy shock affects contemporaneously is the Federal Funds Rate.Wemake two assumptions

to identify the dynamic response to the technology shocks: (i) the only shocks that affect

labor productivity in the long run are the two technology shocks and (ii) the only shock that

affects the price of investment relative to consumption is the innovation to the investment

specific shock. All these identification assumptions are satisfied in our model. Details of

our strategy for computing impulse response functions imposing the shock identification are

reported in ACEL.31

Our data set extends over a long range, while we estimate a single set of impulse response

functions and model parameters. In effect, we suppose that there has been no parameter

30See Christiano, Trabandt and Walentin (2010a, 2010b).
31The identification assumption for the monetary policy shock by itself imposes no restriction on the

VAR parameters. Similarly, Fisher (2006) showed that the identification assumptions for the technology
shocks when applied without simultaneously applying the monetary shock identification, also imposes no
restriction on the VAR parameters. However, ACEL showed that when all the identification assumptions are
imposed at the same time, then there are restrictions on the VAR parameters. We found that the test of the
overidentifying restrictions on the VAR fails to reject the null hypothesis that the restrictions are satisfied
at 5 percent critical level.
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break over this long period. Whether or not there has been a break is a question that has

been debated. For example, it has been argued that the parameters of the monetary policy

rule have not been constant over this period. We do not review this debate here. Implicitly,

our analysis sides with the conclusions of those that argue that the evidence of parameter

breaks is not strong. For example, Sims and Zha (2006) argue that the evidence is consistent

with the idea that monetary policy rule parameters have been unchanged over the sample.

Christiano, Eichenbaum and Evans (1999) argue that the evidence is consistent with the

proposition that the dynamic effects of a monetary policy shock have not changed during

this sample. Standard lag-length selection criteria led us to work with a VAR with 2 lags.32

The number of elements in ψ̂ corresponds to the number of impulses estimated. Since

we consider n = 15 lags in the impulses, there are in principle 3 (i.e., the number of shocks)

times 9 (number of variables) times 15 (number of lags) = 405 elements in ψ̂. However, we

do not include in ψ̂ the 8 contemporaneous responses to the monetary policy shock that are

required to be zero by our monetary policy identifying assumption. Taking the latter into

account, the vector ψ̂ has 387 elements.

According to standard classical asymptotic sampling theory, when the number of obser-

vations, T, is large, we have

√
T
³
ψ̂ − ψ (θ0)

´ a

˜ N (0,W (θ0, ζ0)) ,

where θ0 represents the true values of the parameters that we estimate. The vector, ζ0,

denotes the true values of the parameters of the shocks that are in the model, but that we

do not formally include in the analysis. We find it convenient to express the asymptotic

distribution of ψ̂ in the following form:

ψ̂
a

˜ N (ψ (θ0) , V (θ0, ζ0, T )) , (5.2)

where

V (θ0, ζ0, T ) ≡
W (θ0, ζ0)

T
.

5.2. Impulse Response Matching Step

In the second step of our analysis, we treat ψ̂ as ‘data’ and we choose a value of θ to make

ψ (θ) as close as possible to ψ̂.We give our strategy an approximate Bayesian interpretation.33

This interpretation uses (5.2) to define an approximate likelihood of the data, ψ̂, as a function

32We considered VAR specifications with lag length 1, 2, ...., 12. The Schwartz and Hannan-Quinn criteria
indicate that a single lag in the VAR is sufficient. The Akaike criterion indicates 12 lags, though we discounted
that result. Later, we investigate the sensitivity of our results to lag length.
33Our approach follows in the spirit of Chernozhukov and Hong (2003).
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of θ :

f
³
ψ̂|θ, V (θ0, ζ0, T )

´
=

µ
1

2π

¶N
2

|V (θ0, ζ0, T )|−
1
2 (5.3)

× exp
∙
−1
2

³
ψ̂ − ψ (θ)

´0
V (θ0, ζ0, T )

−1
³
ψ̂ − ψ (θ)

´¸
.

As we explain below, we treat the true value of V (θ0, ζ0, T ) as a known object. Under these

circumstances, the value of θ that maximizes the above function represents an approximate

maximum likelihood estimator of θ. It is approximate for two reasons: (i) the central limit

theorem underlying (5.2) only holds exactly as T →∞ and (ii) the value of V (θ0, ζ0, T ) that

we use is guaranteed to be correct only for T → ∞. Interestingly, our approximation does

not require (as in standard Bayesian analysis, which works with a Normal likelihood) that

the data underlying the VAR, Yt, be Normal. This is an advantage of the method, because

the Normality assumption is not a good one for macroeconomic variables (see Christiano

(2007)).

Treating the function, f, as the likelihood of ψ̂, it follows that the Bayesian posterior of

θ conditional on ψ̂ and V (θ0, ζ0, T ) is:

f
³
θ|ψ̂, V (θ0, ζ0, T )

´
=

f
³
ψ̂|θ, V (θ0, ζ0, T )

´
p (θ)

f
³
ψ̂|V (θ0, ζ0, T )

´ , (5.4)

where p (θ) denotes the priors on θ and f
³
ψ̂|V (θ0, ζ0, T )

´
denotes the marginal density of

ψ̂ :

f
³
ψ̂|V (θ0, ζ0, T )

´
=

Z
f
³
ψ̂|θ, V (θ0, ζ0, T )

´
p (θ) dθ.

As usual, the mode of the posterior distribution of θ can be computed by simply maximizing

the value of the numerator in (5.4), since the denominator is not a function of θ. The marginal

density of ψ̂ is required when we want an overall measure of the fit of our model and when

we want to report the shape of the posterior marginal distribution of individual elements

in θ. To compute the marginal likelihood, we can use a standard random walk metropolis

algorithm or a Laplace approximation. We explain the latter in section 5.4 below. The

results that we report are based on a single Monte Carlo Markov Chain (MCMC) of length

600,000. The first 100,000 draws were dropped and the average acceptance rate in the chain

is 27 percent. We confirmed that the chain is long enough so that all the statistics reported

in the paper have converged.

5.3. Computation of V (θ0, ζ0, T )

A crucial ingredient in our empirical methodology is the matrix, V (θ0, ζ0, T ) . The logic

of our approach requires that we have an at least approximately consistent estimator of
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V (θ0, ζ0, T ) . A variety of approaches is possible here. We use a bootstrap approach. Using

our estimated VAR and its fitted disturbances, we generate a set ofM bootstrap realizations

for the impulse responses. We denote these by ψi, i = 1, ...,M, where ψi denotes the i
th

realization of the 397× 1 vector of impulse responses.34 Consider

V̄ =
1

M

MX
i=1

¡
ψi − ψ̄

¢ ¡
ψi − ψ̄

¢0
, (5.5)

where ψ̄ is the mean of ψi, i = 1, ...,M. We set M = 10, 000. The object, V̄ , is a 397 by 397

matrix, and we assume that the small sample (in the sense of T ) properties of this way (or

any other way) of estimating V (θ0, ζ0, T ) are poor. To improve small sample efficiency, we

proceed in a way that is analogous to the strategy taken in the estimation of frequency-zero

spectral densities (see Newey and West (1987)). In particular, rather than working with the

raw variance-covariance matrix, V̄ , we instead work with b̄V :
b̄V = f

¡
V̄ , T

¢
.

The transformation, f, has the property that it converges to the identity transform, as

T → ∞. In particular, b̄V damps some elements in V̄ , and the damping factor is removed

as the sample grows large. The matrix, b̄V , has on its diagonal, the diagonal elements of V̄ .
The entries in b̄V that correspond to the correlation between the lth lagged response and the

jth lagged response in a given variable to a given shock equals the corresponding entry in V̄ ,

multiplied by ∙
1− |l − j|

n

¸θ1,T
, l, j = 1, ..., n.

Now consider the components of V̄ that correspond to the correlations between components

of different impulse response functions, either because a different variable is involved or

because a different shock is involved, or both. We damp these entries in a way that damps

more the greater is τ , the separation in time of the two impulses. In particular, we adopt

the following damping factors for these entries:

βT

∙
1− |τ |

n

¸θ2,T
, τ = 0, 1, ..., n.

We suppose that

βT → 1, θi,T → 0, T →∞, i = 1, 2,

34To compute a given bootstrap realization, ψi, we first simulate an artificial data set, Y1, ..., YT . We do
this by simulating the response of our estimated VAR to an iid sequence of 14×1 shock vectors that are
drawn randomly with replacement from the set of fitted shocks. We then fit a 2-lag VAR to the artificial
data set using the same procedure used on the actual data. The resulting estimated VAR is then used to
compute the impulse responses, which we stack into the 397×1 vector, ψi.
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where the rate of convergence is whatever is required to ensure consistency of b̄V . These
conditions leave completely open what values of βT , θ1,T , θ2,T we use in our sample. At one

extreme, we have

βT = 0, θ1,T =∞,

and θ2,T unrestricted. This corresponds to the approach in CEE and ACEL, in which b̄V is

simply a diagonal matrix composed of the diagonal components of V̄ . At the other extreme,

we could set βT , θ1,T , θ2,T at their T → ∞ values, in which b̄V = V̄ . Here, we work with

the approach taken in CEE and ACEL. This has the important advantage of making our

estimator particularly transparent. It corresponds to selecting θ so that the model implied

impulse responses lie inside a confidence tunnel around the estimated impulses. When non-

diagonal terms in V̄ are also used, then the estimator aims not just to put the model

impulses inside a confidence tunnel about the point estimates, but it is also concerned about

the pattern of ‘misses’ across different impulse responses. Precisely how the off-diagonal

components of V̄ give rise to concerns about cross-impulse response patterns of misses is

virtually impossible to understand intuitively. This is both because V̄ is an enormous matrix

and because it is not V̄ itself that enters our criterion but its inverse.

5.4. Laplace Approximation

Because the likelihood we work with is only approximate, it is perhaps appropriate that

we also work with an approximation to the posterior distribution. This is not essential,

however, since Monte Carlo algorithms apply perfectly well in our setting, for computing

marginal posteriors or θ and the marginal likelihood of ψ̂.

To derive the Laplace approximation to f
³
θ|ψ̂, V (θ0, ζ0, T )

´
, define

g (θ) ≡ log f
³
ψ̂|θ, V (θ0, ζ0, T )

´
+ log p (θ) .

Let θ∗ denote the mode of the posterior distribution and define the following Hessian matrix:

gθθ = −
∂2g (θ)

∂θ∂θ0
|θ=θ∗.

Note that the matrix, gθθ, is an automatic by-product of standard gradient methods for

computing the mode, θ∗. The second order Taylor series expansion of g about θ = θ∗ is:

g (θ) = g (θ∗)− 1
2
(θ − θ∗)0 gθθ (θ − θ∗) ,

where the slope term is zero if θ∗ is an interior optimum, which we assume. Then,

f
³
ψ̂|θ, V (θ0, ζ0, T )

´
p (θ) ≈ f

³
ψ̂|θ∗, V (θ0, ζ0, T )

´
p (θ∗) exp

∙
−1
2
(θ − θ∗)0 gθθ (θ − θ∗)

¸
.
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Note:
1

(2π)
m
2

|gθθ|
1
2 exp

∙
−1
2
(θ − θ∗)0 gθθ (θ − θ∗)

¸
is the m−variable Normal distribution for the m random variables, θ, with mean θ∗ and

variance-covariance matrix, g−1θθ . By the standard property of a density function,Z
1

(2π)
n
2

|gθθ|
1
2 exp

∙
−1
2
(θ − θ∗)0 gθθ (θ − θ∗)

¸
dθ = 1. (5.6)

Bringing together the previous results, we obtain:

f
³
ψ̂|V (θ0, ζ0, T )

´
=

Z
f
³
ψ̂|θ, V (θ0, ζ0, T )

´
p (θ) dθ

≈
Z

f
³
ψ̂|θ∗, V (θ0, ζ0, T )

´
p (θ∗) exp

∙
−1
2
(θ − θ∗)0 gθθ (θ − θ∗)

¸
dθ

= (2π)
n
2 |gθθ|−

1
2 f
³
ψ̂|θ∗, V (θ0, ζ0, T )

´
p (θ∗) ,

by (5.6). We now have the marginal distribution for ψ̂. We can use this to compare the fit

of different models for ψ̂. In addition, we have an approximation to the marginal posterior

distribution for an arbitrary element of θ, say θi :

θi˜N
¡
θ∗i ,
£
g−1θθ
¤
ii

¢
,

where [A]ii denotes the i
th diagonal element of the matrix, A.

6. Results

We first describe our VAR results. We then turn to the estimation of the DSGE model.

6.1. VAR Results

We briefly describe the impulse response functions implied by the VAR. The solid line in

Figures 3-5 indicate the point estimates of the impulse response functions, while the gray area

displays the corresponding two standard error probability bands. Inflation and the interest

rate are in annualized percent terms, while the other variables are measured in percent. The

solid lines with squares and the dashed lines will be discussed when we review the DSGE

model estimation results.

6.1.1. Monetary Policy Shocks

We make five observations about the estimated dynamic responses to a 50 basis point shock

to monetary policy, displayed in Figure 3. Consider first the response of inflation. Two
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important things to note here are the price puzzle and the delayed and gradual response

of inflation.35 In the very short run the point estimates indicate that inflation moves in a

seemingly perverse direction in response to the expansionary monetary policy shock. This

transitory drop in inflation in the immediate aftermath of a monetary policy shock has been

widely commented on, and has been dubbed the ‘price puzzle’. Christiano, Eichenbaum and

Evans (1999) review the argument that the puzzle may be the outcome of the sort of econo-

metric specification error suggested by Sims (1992), and find evidence that is consistent with

that view. Here, we follow ACEL and CEE in taking the position that there is no economet-

ric specification error. Although price puzzle is not statistically significant, it nevertheless

deserves comment because it has potentially great economic significance. For example, the

presence of a price puzzle in the data complicates the political problem associated with using

high interest rates as a strategy to fight inflation. High interest rates and the consequent

slowdown in economic growth is politically painful and if the public sees it producing higher

inflation in the short run, support for the policy may evaporate unless the price puzzle has

been explained.36 Regarding the slow response of inflation, note how inflation reaches a peak

after two years. Of course, the exact timing of the peak is not very well pinned down (note

the wide confidence intervals). However, the evidence does suggest a sluggish response of

inflation. This is consistent with the views of others, arrived at by other methods, about

the slow response of inflation to a monetary policy shock.37 It has been argued that this

is a major puzzle for macroeconomics. For example, Mankiw (2000) argues that with price

frictions of the type used here, the only way to explain the delayed and gradual response

of inflation to a monetary policy shock is to introduce a degree of stickiness in prices that

exceeds by far what can be justified based on the micro evidence. For this reason, when we

study the ability of our models to match the estimated impulse response functions, we must

be wary of the possibility that this is done only by making prices and wages very sticky. In

35Here, we have borrowed Mankiw’s (2000) language, ‘delayed and gradual’, to characterize the nature of
the response of inflation to a monetary policy shock. Though Mankiw wrote 10 years ago and he cites a wide
range of evidence, Mankiw’s conclusion about how inflation responds to a monetary policy shock resembles
our VAR evidence very closely. Mankiw argues that the response of inflation to a monetary policy shock is
gradual in the sense that it does not peak for 9 quarters.
36There is an important historical example of this political problem. In the early 1970s, at the start of the

Great Inflation in the US, Arthur Burns was chairman of the US Federal Reserve and Wrigth Patman was
chairman of the United States House Committee on Banking and Currency. Patman had the opinion that, by
raising costs of production, high interest rates increase inflation. Patman’s belief had enormous significance
because he was influential in writing the wage and price control legislation at the time. He threatened Burns
that if Burns tried to raise interest rates to fight inflation, Patman would see to it that interest rates were
brought under the control of the wage-price control board (see “The Lasting, Multiple Hassles of Topic A”,
Time Magazine, Monday, April 9, 1973.).
37For example, Mankiw (2000) cites Hume’s 1752 essay ‘Of Money’, in which Hume says that an increase

in the money supply ‘..must first quicken the diligence of every individual, before it increases the price of
labour.’
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addition, we must be wary of the possibility that the econometrics leans too hard on other

features (such as variable capital utilization) to explain the gradual and delayed response of

inflation to a monetary policy shock.

The third observation is that output, consumption, investment and hours worked all

display a slow, hump-shape response to a monetary policy shock, peaking a little over one

year after the shock. As emphasized in section 4, these hump-shape observations are the

reason that researchers introduce habit persistence and costs of adjustment in the flow of

investment into the baseline model. In addition, note that the effect of the monetary shock

on the interest rate is roughly gone after one year, yet the economy continues to respond

well after that. This suggests that to understand the dynamic effects of a monetary policy

shock, one must have a model that displays considerable sources of internal propagation.

A fourth observation concerns the response of capacity utilization. Recall from the discus-

sion of section 4 that the magnitude of the empirical response of this variable represents an

important discipline on the analysis. In effect, those data constrain how heavily we can lean

on variable capital utilization to explain the slow response of inflation to a monetary policy

shock. The evidence in Figure 3 suggests that capacity utilization responds very sharply to a

positive monetary policy shock. For example, it rises three times as much as employment. In

interpreting this finding, we must bear in mind that the capital utilization numbers we have

are for the manufacturing sector. To the extent that the data are influenced by the durable

part of manufacturing, they may overstate the volatility of capacity utilization generally in

the economy.

Our fifth observation concerns the price of investment. In our model, this price is un-

affected by shocks other than those to the technology for converting homogeneous output

into investment goods. Figure 3 indicates that the price of investment rises in response to a

positive shock to investment, contrary to our model. This suggests that it would be worth

exploring modifications to the technology for producing investment goods so that the trade-

off between consumption and investment is nonlinear.38 Under these conditions, the rise in

the investment to consumption ratio that appears to occur in response to an expansionary

monetary policy shock would be associated with a rise in the price of investment.

38For example, instead of specifying a resource constraint in which Ct+ It appears, we could adopt one in
which Ct and It appear in a CES function, i.e.,h

a1C
1/ρ
t + a2I

1/ρ
t

iρ
.

The standard linear specification is a special case of this one, with a1 = a2 = ρ = 1.
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6.1.2. Technology Shocks

Figures 4 and 5 display the responses to neutral and investment specific technology shocks.

Overall, the confidence intervals are wide. The width of these confidence intervals should be

no surprise in view of the nature of the question being addressed. The VAR is informed that

there are two shocks in the data which have a long run effect on labor productivity, and it is

being asked to determine the dynamic effects of these shocks on the data. To understand the

challenge that such a question poses, imagine staring at a data plot and thinking how the

technology shocks might be detected visually. It is no wonder that in many cases, the VAR

response is, ‘I don’t know how this variable responds’. This is what the wide confidence

intervals tell us. For example, nothing much can be said about the response of capacity

utilization to a neutral technology shock.

Though confidence intervals are often wide there are some responses that are significant.

For example, there is a significant rise in consumption, output, and hours worked in response

to a neutral shock, according to these results. A particularly striking result in Figure 4 is the

immediate drop in inflation in the wake of a positive shock to neutral technology. This drop

has led some researchers to conjecture that the rapid response of inflation to a technology

shock spells trouble for sticky price/sticky wage models. We investigate this conjecture in

the next section.

6.2. Model Results

6.2.1. Parameters

Parameters whose values are set a priori are listed in Table 1. We found that when we esti-

mated the parameters, κw and λw, the estimator drove them to their boundaries. This is why

we simply set λw to a value near unity and we set κw = 1. The steady state value of inflation

(a parameter in the monetary policy rule and the price and wage updating equations), the

steady state government consumption to output ratio, and the growth rate of the investment

specific technology were chosen to coincide with their corresponding sample means in our

data set.39 The growth rate of neutral technology was chosen so that, conditional on the

growth rate of investment specific technology, the steady state growth rate of output in the

model coincides with the corresponding sample average in the data. We set ξw = 0.75, so

that the model implies wages are reoptimized once a year on average. We did not estimate

this parameter because we found that it is difficult to separately identify the value of ξw and

the curvature parameter of household labor disutility, φ.

The parameters for which we report priors and posteriors are listed in Table 2. Note

39In our model, the relative price of investment goods represents a direct observation the technology shock
for producing investment goods.
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first that the degree of price stickiness, ξp, is modest. The time between price reoptimiza-

tions implied by the posterior mean of this parameter is a little less than 3 quarters. The

amount of information in the likelihood, (5.3), about the value of ξp is reasonably large.

The posterior standard deviation is roughly an order of magnitude smaller than the prior

standard deviation and the posterior 95 percent probability interval is half the length of

the prior probability interval. Generally, the amount of information in the likelihood about

all the parameters is large in this sense. An exception to this pattern is the coefficient

on inflation in the Taylor rule, rπ. There appears to be relatively little information about

this parameter in the likelihood. Note that φ is estimated to be quite small, implying a

consumption-compensated labor supply elasticity for the family of around 8. Such a high

elasticity would be regarded as empirically implausible if it were interpreted as the elasticity

of supply of hours by a representative agent. However, as discussed in section 2.3 above, this

is not our interpretation.

Table 3 reports steady state properties of the model, evaluated at the posterior mean of

the parameters. According to the results, the capital output ratio is lower than the empirical

value of 12 typically reported in the real business cycle literature.

6.2.2. Impulse Responses

Figures 3-5 display the response of the indicated macroeconomic variables to our three shocks.

In each case, the solid black line is the point estimate of the dynamic response generated

by our estimated VAR. The grey area is an estimate of the corresponding 95% probability

interval.40 Our estimation strategy in effect selects a model parameterization that places the

model-implied impulse response functions as close as possible to the center of the grey area,

while not suffering too much of a penalty from the priors. The estimation criterion is less

concerned about reproducing VAR-based impulse response functions where the grey areas

are the widest.

The line with solid squares in the figures display the impulse responses of our model, at

the posterior mean of the parameters. The dashed lines display the 95 percent probability

interval for the impulse responses implied by the posterior distribution of the parameters.

These intervals are in all cases reasonably tight, reflecting the tight posterior distribution on

the parameters as well as the natural restrictions of the model itself.

Consider Figure 3, which displays the response of standard macroeconomic variables to a

monetary policy shock. Note how well the model captures the delayed and gradual response

of inflation. In the model it takes two years for inflation to reach its peak response after the

monetary policy shock. Note that the model even captures the ‘price puzzle’ phenomenon,

40The probability interval is defined by the point estimate of the impulse response, plus and minus 1.96
times the square root of the relevant term on the diagonal of V̄ reported in (5.5).
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according to which inflation moves in the ‘wrong’ direction initially. This apparently perverse

initial response of inflation is interpreted by the model as reflecting the reduction in labor

costs associated with the cut in the nominal rate of interest. The notable result here is that

the slow response of inflation to a monetary policy shock is explained with a modest degree

of wage and price-setting frictions. In addition, the gradual and delayed response of inflation

is not due to an excessive or counterfactual increase in capital utilization. Indeed, the model

substantially understates the rise in capital utilization. While on its own this is a failure

of the model, it does draw attention to the apparent ease with which the model is able to

capture the inertial response of inflation to a monetary shock.

The model also captures the response of output and consumption to a monetary policy

shock reasonably well. However, the model apparently does not have the flexibility to capture

the relatively sharp rise and fall in the investment response, although the model responses

lie inside the grey area. The relatively large estimate of the curvature in the investment

adjustment cost function, S00, suggests that to allow a greater response of investment to a

monetary policy shock would cause the model’s prediction of investment to lie outside the

grey area in the initial and later quarters. These findings for monetary policy shocks are

broadly similar to those reported in CEE and ACEL.

Figure 4 displays the response of standard macroeconomic variables to a neutral tech-

nology shock. Note that the model is reasonably successful at reproducing the empirically

estimated responses. The dynamic response of inflation is particularly notable, particularly

in light of the estimation results reported in ACEL. Those results suggest that the sharp

and precisely estimated drop in inflation in response to a neutral technology shock is diffi-

cult to reproduce in a model like ours. In describing this problem for their model, ACEL

express a concern that the failure reflects a deeper problem with sticky price models.41 They

suggest that perhaps the emphasis on price and wage setting frictions, largely motivated

by the inertial response of inflation to a monetary shock, is shown to be misguided by the

evidence that inflation responds rapidly to technology shocks shocks.42 Our results suggest a

far more mundane possibility. There are two key differences between our model and the one

in ACEL which allow it to reproduce the response of inflation to a technology shock more

or less exactly without hampering its ability to account for the slow response of inflation

to a monetary policy shock. First, in our model there is no indexation of prices to lagged

inflation (see (4.5)). ACEL follows CEE in supposing that when firms cannot optimize their

41See Paciello (2009) for another discussion of this point.
42The concern is reinforced by the fact that an alternative approach, one based on information imperfec-

tions and minimal price/wage setting frictions, seems like a natural one for explaining the puzzle of the slow
response of inflation to monetary policy shocks and the quick response to technology shocks (see Máckowiak
and Wiederholt (2009), Mendes (2009), and Paciello (2009)). Dupor, Han and Tsai (2009) suggest more
modest changes in the model structure to accommodate the inflation puzzle.
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price, they index it fully to lagged aggregate inflation. The position of our model on price

indexation is a key reason why we can account for the rapid fall in inflation after a neu-

tral technical shock while ACEL cannot. We suspect that our way of treating indexation

is a step in the right direction from the point of view of the microeconomic data. Micro

observations suggest that individual prices do not change for extended periods of time. A

second distinction between our model and the one in ACEL is that we specify the neutral

technology shock to be a random walk (see (4.2)), while in ACEL the growth rate of the

estimated technology shock is highly autocorrelated. In ACEL, a technology shock triggers

a strong wealth effect which stimulates a surge in demand that places upward pressure on

marginal cost and thus inflation.

Figure 5 displays dynamic responses of macroeconomic variables to an investment specific

shock. The evidence indicates that the two models, parameterized at their posterior modes,

do well in accounting for these responses.

6.3. Assessing VAR Robustness and Accuracy of the Laplace Approximation

It is well known that when the start date or number of lags for a VAR are changed, the

estimated impulse response functions change. In practice, one hopes that the width of

probability intervals reported in the analysis is a reasonable rule-of-thumb guide to the

degree of non-robustness. In Figures 7 and 8 we display all the estimated impulse response

functions from our VAR when we apply a range of different start dates and lag lengths. The

VAR point estimates are displayed in Figures 7 and 8 in the form of the solid line with solid

squares. The 95% probability intervals are indicated by the dashed lines. According to the

figures, the degree of variation across different samples and lag lengths corresponds roughly

to the width of probability intervals. Although results do change across the perturbed VARs,

the magnitude of the changes are roughly what is predicted by the rule of thumb. In this

sense, the degree of non-robustness in the VAR is not great.

Figure 9 displays the priors and posteriors of the model parameters. The posteriors are

computed by two methods: the MCMC method, and the Laplace approximation described

in section 5.4. It is interesting that the Laplace approximation and the results of the MCMC

algorithm are very similar. These results suggest that one can save substantial amounts of

time by computing the Laplace approximation during the early and intermediate phases of

a research project. At the end of the project, when it is time to produce the final draft of

the manuscript, one can then perform the time-intensive MCMC calculations.
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7. Conclusion

The literature on DSGE models for monetary policy is too large to review in all its detail

here. Necessarily, we have been forced to focus on only a part. In the introduction we

argued that a major success of that literature is that monetary DSGE models perform well

in forecasting, yet we have not discussed that topic at all. In our discussion about the

estimation of DSGE models we have focused on a partial information method that allowed

us to accomplish two things. First, we were able to explain some of the basic choices that

were made in the construction of monetary DSGE models. This includes the decision to

include habit persistence in preferences, a particular type of adjustment costs in investment,

etc. Second, we were able to highlight a basic success of monetary DSGE models, that they

provide an account for the slow response of inflation to a monetary policy shock and the

substantial response of real variables. One interpretation of the field of monetary economics

is that it is all about the identification of frictions that allow a model to explain these

monetary non-neutralities. Although we think that our discussion of results using a limited

information econometric technique is useful for the reasons given, the literature has moved on

to use full information methods. In effect, these methods allow one to build in the additional

model details required to provide a full account of the data. We have not been able to review

the important results and themes in this literature.

Another important topic concerns the limitations of monetary DSGE models. An central

puzzle concerns the famous statistical rejections of the intertemporal Euler equation that

lies at the heart of DSGE models (see, e.g., Hansen and Singleton (1983)). These rejections

of what is in effect the “IS equation” in the New Keynesian model, pose a challenge for that

model’s account of the way shocks propagate through the economy. At the same time, the

limited information econometric technique that we apply suggests that the New Keynesian

model is able to capture the basic features of the transmission of three important shocks.43

An outstanding question is how to resolve these apparently conflicting pieces of information.

Finally, we have not been able to review the new frontiers for monetary DSGE models.

The recent financial turmoil has accelerated the introduction of a richer financial sector into

the New Keynesian model. With these additions, the model is able to address important

policy questions that cannot be addressed by the models described here: how should mone-

tary policy respond to an increase in interest rate spreads?, how do we modify the framework

to allow it to place structure on the recent forays into ‘unconventional monetary policy’ in

which the monetary authority purchases privately issued liabilities such as mortgages and

commercial paper? The model described here is silent on these questions. However, an ex-

43In our empirical analysis we have not reported our VAR’s implications for the importance of the three
shocks that we analyzed. However, ACEL documents that these shocks together account for well over 50
percent of the variation of macroeconomic time series like output, investment and employment.
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ploding literature too large to review here has begun to introduce the modifications necessary

to address them.44

Another frontier for new model development concerns the labor market. The basic model

developed here does not allow one to think about labor market variables such as unemploy-

ment. Yet, this is a variable of key interest to policy makers. To some extent, analysis of

unemployment necessarily also involves the analysis of financial frictions. Limited access to

credit markets is part of the reason unemployment is socially costly and of concern to policy

makers. Extensive research on this frontier is now also well under way.45
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A. Data Appendix

A.1. Data Sources

FRED2: Database of the Federal Reserve Bank of St. Louis available at:
http://research.stlouisfed.org/fred2/.

BLS: Database of the Bureau of Labor Statistics available at: http://www.bls.gov/.
FR: Fujita and Ramey (2006) data on job separations and job findings available at:
http://www.philadelphiafed.org/research-and-data/economists/fujita/transition_rates.xls.

SH: Data on job separations and job findings available at Robert Shimer’s Homepage:
http://robert.shimer.googlepages.com/.

NIPA: Database of the National Income And Product Accounts available at:
http://www.bea.gov/national/nipaweb/index.asp

BGOV: Database of the Board of Governors of the Federal Reserve System available at:

http://www.federalreserve.gov/econresdata/default.htm.

CONFB: Database of the Conference Board available at:
http://www.conference-board.org/economics/HelpWanted.cfm

A.2. Raw Data

Nominal GDP (GDP ): nominal gross domestic product, billions of dollars, seasonally
adjusted at annual rates, NIPA.

GDP Deflator (P ) : price index of nominal gross domestic product, index numbers,
2005=100, seasonally adjusted, NIPA.

Nominal nondurable consumption (Cnom
nondurables) : nominal personal consumption expen-

ditures: nondurable goods, billions of dollars, seasonally adjusted at annual rates, NIPA.

Nominal durable consumption (Cnom
durables) : nominal personal consumption expenditures:

durable goods, billions of dollars, seasonally adjusted at annual rates, NIPA.

Nominal consumption services (Cnom
services) : nominal personal consumption expenditures:

services, billions of dollars, seasonally adjusted at annual rates, NIPA.

Nominal investment (Inom) : nominal gross private domestic investment, billions of dollars,
seasonally adjusted at annual rates, NIPA.

Price index: nominal durable consumption (PCnom
durables) : price index of durable goods,

index numbers, 2005=100, seasonally adjusted at annual rates, NIPA.

Price index: nominal investment (PInom) : price index of nominal gross private domestic
investment, index numbers, 2005=100, seasonally adjusted at annual rates, NIPA.

Employment (E): civilian employment, CE16OV, seasonally adjusted, monthly, thou-
sands, persons 16 years of age and older, FRED2.
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Federal Funds Rate (FF ): effective federal funds rate, H.15 selected interest rates,
monthly, percent, averages of daily figures, FRED2.

Treasury bill rate (TBill): 3-month treasury bill: secondary market rate, H.15 selected
interest rates, monthly, percent, averages of business days, discount basis, FRED2.

Population (POP ): civilian noninstitutional population, not seasonally adjusted, monthly,
thousands, FRED2.

Capacity utilization (CAP ): capacity utilization, G.17 - industrial production and capac-
ity utilization, UTL: manufacturing (SIC) G17/CAPUTL/CAPUTL.B00004.S.Q. , season-

ally adjusted, percentage, BGOV.

Job separation rate (S): separation rate: E to U, seasonally adjusted, monthly, 1976M1-
2008M12, FR. Spliced with corresponding data from Robert Shimer for the sample before

1976, quarterly. SH.

Job finding rate (F ): Job finding rate: U to E, seasonally adjusted, monthly, 1976M1-
2008M12, FR. Spliced with corresponding data from Robert Shimer for the sample before

1976, quarterly. SH.

Vacancies (V ): index of help wanted advertising in newspapers, HELPWANT, The Con-
ference Board, seasonally adjusted, monthly, index 1987=100,

Unemployment rate (U): unemployment rate labor force status: unemployment rate,
LNS14000000, seasonally adjusted, percent, 16 years and over, monthly frequency, BLS.

Nominal wage (W ): nominal hourly compensation, PRS85006103, sector: nonfarm busi-

ness, seasonally adjusted, index, 1992 = 100, BLS.

Average hours (Havg.): average weekly hours, PRS85006023, sector: nonfarm business,

seasonally adjusted, index, 1992 = 100, BLS.

Participation rate (LabForce) : civilian participation rate, CIVPART, the employment
situation, seasonally adjusted, monthly, percent, BLS.

A.3. Data Transformations

Raw data are transformed as follows. POP is seasonally adjusted using the X12 (multi-

plicative) method. The indices for W and Havg. are normalized such that 2005=100. E,

FF, TBill, POP, V, U and LabForce are converted to quarterly frequencies by averaging

monthly observations. For the job finding rate F , we compute the quarterly measure from

monthly data as follows:

Fq1 = Fm1 + (1− Fm1)Fm2 + (1− (1− Fm1)Fm2)Fm3,

where Fq1 denotes the finding rate of quarter 1 and Fm1, Fm2, Fm3 are the corresponding

monthly finding rates. The case for the separation rate, S, follows accordingly.
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Due to missing data we use TBill as a proxy for the FF prior 1954Q3. All data are

available from 1948Q1 except for vacancies for which the first observation is 1951Q1.

We calculate the following time series which, among others, is used in the VAR:

real GDP =
GDP

P ∗ POP
hours =

Havg. ∗E
Pop

nominal consumption = Cnom
nondurables + Cnom

services

nominal investment = Inom + Cnom
durables

The price of investment is calculated as a Torn price index using PInom, PCnom
durables, I

nom

and Cnom
durables.The resulting price index PIT and quantity index QIT are used to calculate

the relative price of investment as follows:

relative price of investment=
PIT ∗ Inom
P ∗QIT .

B. Scaling of Variables in Medium-sized Model

We adopt the following scaling of variables. The neutral shock to technology is zt and its

growth rate is μz,t :
zt
zt−1

= μz,t.

The variable, Ψt, is an investment specific technology shock and it is convenient to define

the following combination of our two technology shocks:

z+t ≡ Ψ
α

1−α
t zt,

μz+,t ≡ μ
α

1−α
Ψ,t μz,t. (B.1)

Capital, K̄t, and investment, It, are scaled by z+t Ψt. Consumption goods Ct, government

consumption Gt and the real wage, Wt/Pt are scaled by z+t . Also, υt is the multiplier on the

nominal household budget constraint in the Lagrangian version of the household problem.

That is, υt is the marginal utility of one unit of currency. The marginal utility of a unit of

consumption is υtPt. The latter must be multiplied by z+t to induce stationarity. Output,

Yt, is scaled by z+t . Optimal prices, P̃t, chosen by intermediate good firms which are subject

to Calvo price setting frictions are scaled by the price, Pt,of the homogeneous output good.

Similarly, optimal wages, W̃t, chosen by monopoly unions which are subject to Calvo wage

setting frictions are scaled by the wage, Wt, of the homogenous labour input. Thus our
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scaled variables are:

kt+1 =
Kt+1

z+t Ψt

, k̄t+1 =
K̄t+1

z+t Ψt

, it =
It

z+t Ψt

, ct =
Ct

z+t
, (B.2)

gt =
Gt

z+t
, ψz+,t = υtPtz

+
t , w̄t =

Wt

z+t Pt

, ỹt =
Yt
z+t

,

p̃t =
P̃t

Pt
, wt =

W̃t

Wt
.

We define the scaled date t price of new installed physical capital for the start of period t+1

as pk0,t and we define the scaled real rental rate of capital as r̄kt :

pk0,t = ΨtPk0,t, r̄
k
t = Ψtr

k
t .

where Pk0,t is in units of the homogeneous good. The inflation rate is defined as:

πt =
Pt

Pt−1
.

C. Equilibrium Conditions for the Medium-sized Model

C.1. Firms

We let st denote the firm’s marginal cost, divided by the price of the homogeneous good.

The standard formula, expressing this as a function of the factor inputs, is as follows:

st =

³
rkt Pt
α

´α ¡
WtRt

1−α
¢1−α

Ptz
1−α
t

.

When expressed in terms of scaled variables, this reduces to:

st =

µ
r̄kt
α

¶αµ
w̄tRt

1− α

¶1−α
. (C.1)

Productive efficiency dictates that st is also equal to the ratio of the real cost of labor to the

marginal product of labor:

st =

¡
μΨ,t

¢α
w̄tRt

(1− α)
³

ki,t
μz+,t

/Hi,t

´α . (C.2)

The only real decision taken by intermediate good firms is to optimize price when it is

selected to do so under the Calvo frictions. The first order necessary conditions associated
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with price optimization are, after scaling:46

Et

"
ψz+,tyt +

µ
π̃f,t+1
πt+1

¶ 1
1−λf

βξpF
f
t+1 − F f

t

#
= 0, (C.3)

Et

⎡⎣λfψz+,tytst + βξp

µ
π̃f,t+1
πt+1

¶ λf
1−λf

Kf
t+1 −Kf

t

⎤⎦ = 0, (C.4)

p̊t =

⎡⎢⎢⎣¡1− ξp
¢⎛⎜⎝1− ξp

³
π̃f,t
πt

´ 1
1−λf

1− ξp

⎞⎟⎠
λf

+ ξp

µ
π̃f,t
πt

p̊t−1

¶ λf
1−λf

⎤⎥⎥⎦
1−λf
λf

, (C.5)

⎡⎢⎣1− ξp

³
π̃f,t
πt

´ 1
1−λf

1− ξp

⎤⎥⎦
(1−λf)

=
Kf

t

F f
t

, (C.6)

π̃f,t ≡ π. (C.7)

C.2. Households

We now derive the equilibrium conditions associated with the household. We first consider

the household’s consumption saving decision. We then turn to its wage decision. The

Lagrangian representation of the household’s problem is:

Ej
0

∞X
t=0

βt{
"
ln (Ct − bCt−1)−AL

h1+φj,t

1 + φ
dj

#

υt

∙
Wt,jht,jdj +Xk

t K̄t +Rt−1Bt + at,j − Pt

µ
Ct +

1

Ψt
It

¶
−Bt+1 − PtPk0,t∆t

¸
+ωt

∙
∆t + (1− δ) K̄t +

µ
1− S

µ
It
It−1

¶¶
It − K̄t+1

¸
}

The first order condition with respect to Ct is:

1

Ct − bCt−1
−Et

bβ

Ct+1 − bCt
= υtPt,

or, after expressing this in scaled terms and multiplying by z+t :

ψz+,t =
1

ct − b ct−1
μz+,t

− βbEt
1

ct+1μz+,t+1 − bct
. (C.8)

46When we log-linearize about the steady state, we obtain,

π̂t = βEtπ̂t+1 +

¡
1− βξp

¢ ¡
1− ξp

¢
ξp

bst,
where a hat indicates log-deviation from steady state.
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The first order condition with respect to ∆t is, after rearranging:

PtPk0,t =
ωt

υt
. (C.9)

The first order condition with respect to It is:

ωt

∙
1− S

µ
It
It−1

¶
− S0

µ
It
It−1

¶
It
It−1

¸
+Etβωt+1S

0
µ
It+1
It

¶µ
It+1
It

¶2
=

Ptυt
Ψt

.

Making use of (C.9), multiplying by Ψtz
+
t , rearranging and using the scaled variables,

ψz+,tpk0,t

∙
1− S

µ
μz+,tμΨ,tit

it−1

¶
− S0

µ
μz+,tμΨ,tit

it−1

¶
μz+,tμΨ,tit

it−1

¸
(C.10)

+βψz+,t+1pk0,t+1S
0
µ
μz+,t+1μΨ,t+1it+1

it

¶µ
it+1
it

¶2
μz+,t+1μΨ,t+1 = ψz+,t,

Optimality of the choice of K̄t+1 implies the following first order condition:

ωt = βEtυt+1X
k
t+1 + βEtωt+1 (1− δ) = βEtυt+1

£
Xk

t+1 + Pt+1Pk0,t+1 (1− δ)
¤
.

Using (C.9) again,

υt = Etβυt+1

∙
Xk

t+1 + Pt+1Pk0,t+1 (1− δ)

PtPk0,t

¸
= Etβυt+1R

k
t+1, (C.11)

where Rk
t+1 denotes the rate of return on capital:

Rk
t+1 ≡

Xk
t+1 + Pt+1Pk0,t+1 (1− δ)

PtPk0,t

Multiply (C.11) by Ptz
+
t and express the results in scaled terms:

ψz+,t = βEtψz+,t+1

Rk
t+1

πt+1μz+,t+1
. (C.12)

Expressing the rate of return on capital, (4.15), in terms of scaled variables:

Rk
t+1 =

πt+1
μΨ,t+1

ut+1r̄
k
t+1 − a(ut+1) + (1− δ)pk0,t+1

pk0,t
. (C.13)

The first order condition associated with capital utilization is:

Ψtr
k
t = a0 (ut) ,

or, in scaled terms,

r̄kt = a0 (ut) . (C.14)
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The first order condition with respect to Bt+1 is:

υt = βυt+1Rt.

Multiply by z+t Pt :

ψz+,t = βEt

ψz+,t+1

μz+,t+1πt+1
Rt. (C.15)

Finally, the law of motion for the capital stock, in terms of scaled variables is as follows:

k̄t+1 =
1− δ

μz+,tμΨ,t
k̄t +

µ
1− S̃

µ
μz+,tμΨ,tit

it−1

¶¶
it. (C.16)

C.3. Resource Constraint

The resource constraint after scaling by z+t is given by:

yt = gt + ct + it + a (ut)
k̄t

μψ,tμz+,t
. (C.17)

In appendix D we derive a relationship between total output of the homogeneous good, Yt,

and aggregate factors of production which in scaled form looks as follows:

yt = (p̊t)
λf

λf−1

∙µ
1

μΨ,t

1

μz+,t
kt

¶α

H1−α
t − ϕ

¸
, (C.18)

where

kt = k̄tut. (C.19)

Finally, GDP is given by:

gdpt = gt + ct + it. (C.20)

C.4. Wage Setting by the Monopoly Union

We turn now to the equilibrium conditions associated with the household wage-setting de-

cision. Consider the jth household that has an opportunity to reoptimize its wage at time

t. We denote this wage rate by W̃t. This is not indexed by j because the situation of each

household that optimizes its wage is the same. In choosing W̃t, the household considers the

discounted utility (neglecting currently irrelevant terms in the household objective) of future

histories when it cannot reoptimize:

Ej
t

∞X
i=0

(βξw)
i

"
−AL

(hj,t+i)
1+φ

1 + φ
dj + υt+iWj,t+ihj,t+idj

#
,
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where υt is the multiplier on the household’s period t budget constraint. The demand for

the jth household’s labor services, conditional on it having optimized in period t and not

again since, is:

hj,t+i =

Ã
W̃tπ̃w,t+i · · · π̃w,t+1

Wt+i

! λw
1−λw

Ht+i.

Here, it is understood that π̃w,t+i · · · π̃w,t+1 ≡ 1 when i = 0. Substituting this into the

objective function and optimizing (see appendix F for details) yields the following equilibrium

equations associated with wage setting:

πw,t+1 =
Wt+1

Wt
=

w̄t+1z
+
t+1Pt+1

w̄tz
+
t Pt

=
w̄t+1μz+,t+1πt+1

w̄t
, (C.21)

ht = ẘ
λw

1−λw
t Ht, (C.22)

ẘt =

⎡⎢⎢⎣(1− ξw)

⎛⎜⎝1− ξw

³
π̃w,t
πw,t

´ 1
1−λw

1− ξw

⎞⎟⎠
λw

+ ξw

µ
π̃w,t
πw,t

ẘt−1

¶ λw
1−λw

⎤⎥⎥⎦
1−λw
λw

. (C.23)

In addition to (C.23), we have following equilibrium conditions associated with sticky wages47:

Fw,t =
ψz+,t

λw
ẘ
− λw
1−λw

t ht + βξwEt

µ
w̄t+1

w̄t

¶µ
π̃w,t+1
πw,t+1

¶1+ λw
1−λw

Fw,t+1 (C.24)

Kw,t =

µ
ẘ
− λw
1−λw

t ht

¶1+φ
+ βξwEt

µ
π̃w,t+1
πw,t+1

¶ λw
1−λw (1+φ)

Kw,t+1 (C.25)

1

AL

⎡⎢⎣1− ξw

³
π̃w,t
πw,t

´ 1
1−λw

1− ξw

⎤⎥⎦
1−λw(1+φ)

w̄tFw,t = Kw,t (C.26)

π̃w,t+1 = πκwt π(1−κw)μz+ . (C.27)

47Log−linearizing these equations about the nonstochastic steady state we obtain,

Et

∙
η0 b̄wt−1 + η1 b̄wt + η2 b̄wt+1 + η3π̂t + η4π̂t+1 + η5π̂t−1

+η6ψ̂z+,t + η7Ĥt + η8μ̂z+,t + η9μ̂z+,t+1

¸
= 0,

where

bw =
[λwσL − (1− λw)]

[(1− βξw) (1− ξw)]
, η0 = bwξw, η1 = σLλw − bw

¡
1 + βξ2w

¢
, η2 = bwβξw,

η3 = −bwξw (1 + βκw) , η4 = bwβξw, η5 = bwξwκw, η6 = (1− λw),

η7 = −(1− λw)σL, η8 = −bwξw, η9 = bwβξw.
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C.5. Equilibrium Equations

The equilibrium conditions of the model correspond to the following 28 equations,

(C.1), (C.2), (C.3), (C.4), (C.5), (C.6), (C.7), (C.16), (C.8), (C.10), (C.14),

(C.15), (C.22), (4.20), (C.17), (C.18), (4.22), (C.19), (4.23), (C.13),

(C.21), (C.24), (C.25), (C.26), (C.23), (C.27), (C.20), (C.12),

which can be used to solve for the following 28 unknowns:

r̄kt , w̄t, Rt, st, πt, pk0,t, kt+1, k̄t+1, ut, ht,Ht, it, ct, ψz+,t, yt,

Kf
t , F

f
t , π̃f,t, p̊t, Kw,t, Fw,t, π̃

w
t , R

k
t , St, a (ut) , ẘt, πw,t, gdpt.

D. Resource Constraint in the Medium-sized Model

We begin by deriving a relationship between total output of the homogeneous good, Yt, and

aggregate factors of production. We first consider the production of the homogenous output

good:

Y sum
t =

Z 1

0

Yi,tdi

=

Z 1

0

£
(ztHi,t)

1−αKα
i,t − z+t ϕ

¤
di

=

Z 1

0

∙
z1−αt

µ
Ki,t

Hit

¶α

Hit − z+t ϕ

¸
di

= z1−αt

µ
Kt

Ht

¶α Z 1

0

Hitdi− z+t ϕ,

where Kt is the economy-wide average stock of capital services and Ht is the economy-wide

average of homogeneous labor. The last expression exploits the fact that all intermediate

good firms confront the same factor prices, and so they adopt the same capital services

to homogeneous labor ratio. This follows from cost minimization, and holds for all firms,

regardless whether or not they have an opportunity to reoptimize. Then,

Y sum
t = z1−αt Kα

t H
1−α
t − z+t ϕ.

The demand for Yj,t is µ
Pt

Pi,t

¶ λf
λf−1

=
Yi,t
Yt

,

so that

Y̊t ≡
Z 1

0

Yi,tdi =

Z 1

0

Yt

µ
Pt

Pi,t

¶ λf
λf−1

di = YtP

λf
λf−1
t

³
P̊t

´ λf
1−λf ,
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say, where

P̊t =

"Z 1

0

P

λf
1−λf
i,t di

# 1−λf
λf

. (D.1)

Dividing by Pt,

p̊t =

⎡⎣Z 1

0

µ
Pit

Pt

¶ λf
1−λf

di

⎤⎦
1−λf
λf

,

or,

p̊t =

⎡⎢⎢⎣¡1− ξp
¢⎛⎜⎝1− ξp

³
π̃t
πt

´ 1
1−λf

1− ξp

⎞⎟⎠
λf

+ ξp

µ
π̃t
πt
p̊t−1

¶ λf
1−λf

⎤⎥⎥⎦
1−λf
λf

. (D.2)

The preceding discussion implies:

Yt = (p̊t)
λf

λf−1 Y̊t = (p̊t)
λf

λf−1
£
z1−αt Kα

t H
1−α
t − z+t ϕ

¤
,

or, after scaling by z+t ,

yt = (p̊t)
λf

λf−1

∙µ
1

μΨ,t

1

μz+,t
kt

¶α

H1−α
t − ϕ

¸
,

where

kt = k̄tut.

Finally, we adjust hours worked in the resource constraint so that it corresponds to the total

number of people working, as in (F.6):

yt = (p̊t)
λf

λf−1

"µ
1

μΨ,t

1

μz+,t
kt

¶α ∙
ẘ
− λw
1−λw

t ht

¸1−α
− ϕ

#
.

It is convenient to also have an expression that exhibits the uses of the homogeneous

output,

z+t yt = Gt + Ct + Ĩt,

or, after scaling by z+t :

yt = gt + ct + it + a (ut)
k̄t

μψ,tμz+,t
.
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E. Optimal Price Setting in the Medium-sized Model

The profit function of the ith intermediate good firm with the substituted demand function

is given by,

Et

∞X
j=0

βjυt+jPt+jYt+j{
µ
Pi,t+j

Pt+j

¶1− λf
λf−1

− st+j

µ
Pi,t+j

Pt+j

¶ −λf
λf−1

},

or,

Et

∞X
j=0

βjυt+jPt+jYt+j{(Xt,j p̃t)
1− λf

λf−1 − st+j (Xt,j p̃t)
−λf
λf−1},

where
Pi,t+j

Pt+j
= Xt,j p̃t, Xt,j ≡

(
π̃t+j ···π̃t+1
πt+j ···πt+1 , j > 0

1, j = 0
.

The ith firm maximizes profits by choice of p̃t. The fact that this variable does not have

an index, i, reflects that all firms that have the opportunity to reoptimize in period t solve

the same problem, and hence have the same solution. Differentiating its profit function,

multiplying the result by p̃
λf

λf−1
+1

t , rearranging, and scaling we obtain:

Et

∞X
j=0

¡
βξp
¢j
At+j [p̃tXt,j − λfst+j] = 0,

where At+j is exogenous from the point of view of the firm:

At+j = ψz+,t+jyt+jXt,j.

After rearranging the optimizing intermediate good firm’s first order condition for prices, we

obtain,

p̃t =
Et

P∞
j=0

¡
βξp
¢j
At+jλfst+j

Et

P∞
j=0

¡
βξp
¢j
At+jXt,j

=
Kf

t

F f
t

,

say, where

Kf
t ≡ Et

∞X
j=0

¡
βξp
¢j
At+jλfst+j

F f
t = Et

∞X
j=0

¡
βξp
¢j
At+jXt,j.

These objects have the following convenient recursive representations:

Et

"
ψz+,tyt +

µ
π̃,t+1
πt+1

¶ 1
1−λf

βξpF
f
t+1 − F f

t

#
= 0

Et

⎡⎣λfψz+,tytst + βξp

µ
π̃,t+1
πt+1

¶ λf
1−λf

Kf
t+1 −Kf

t

⎤⎦ = 0.
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Turning to the aggregate price index:

Pt =

∙Z 1

0

P
1

1−λf
it di

¸(1−λf )
(E.1)

=

∙¡
1− ξp

¢
P̃

1
1−λf
t + ξp (π̃tPt−1)

1
1−λf

¸(1−λf )
.

After dividing by Pt and rearranging:

1− ξp

³
π̃,t
πt

´ 1
1−λf

1− ξp
= (p̃t)

1
1−λf . (E.2)

This completes the derivations of optimal decisions with respect to firms price setting.

F. Optimal Wage Setting in the Medium-sized Model

The objective function with the substituted labor demand function looks as follows:

Ej
t

∞X
i=0

(βξw)
i [−AL

µ³
W̃tπ̃w,t+i···π̃w,t+1

Wt+i

´ λw
1−λw

Ht+i

¶1+φ
1 + φ

+υt+iW̃tπ̃w,t+i · · · π̃w,t+1

Ã
W̃tπ̃w,t+i · · · π̃w,t+1

Wt+i

! λw
1−λw

Ht+i].

Recalling the scaling of variables, (B.2), we have

W̃tπ̃w,t+i · · · π̃w,t+1
Wt+i

=
W̃tπ̃w,t+i · · · π̃w,t+1

w̄t+iz
+
t+iPt+i

=
W̃t

w̄t+iz
+
t Pt

Xt,i (F.1)

=
Wt

³
W̃t/Wt

´
w̄t+iz

+
t Pt

Xt,i =
w̄t

³
W̃t/Wt

´
w̄t+i

Xt,i =
wtw̄t

w̄t+i
Xt,i,

where

Xt,i =
π̃w,t+i · · · π̃w,t+1

πt+iπt+i−1 · · · πt+1μz+,t+i · · · μz+,t+1
, i > 0 (F.2)

= 1, i = 0.

It is interesting to investigate the value of Xt,i in steady state, as i→∞. Thus,

Xt,i =
(πt · · · πt+i−1)κw (πi)(1−κw) μiz+

πt+iπt+i−1 · · · πt+1μz+,t+i · · · μz+,t+1
.
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In steady state,

Xt,i =
(πi)

κw (πi)
(1−κw) μiz+

πiμiz+
= 1.

Simplifying using the scaling notation,

Ej
t

∞X
i=0

(βξw)
i [−AL

µ³
wtw̄t
w̄t+i

Xt,i

´ λw
1−λw

Ht+i

¶1+φ
1 + φ

+υt+iWt+i
wtw̄t

w̄t+i
Xt,i

µ
wtw̄t

w̄t+i
Xt,i

¶ λw
1−λw

Ht+i],

or,

Ej
t

∞X
i=0

(βξw)
i [−AL

µ³
wtw̄t
w̄t+i

Xt,i

´ λw
1−λw

Ht+i

¶1+φ
1 + φ

+ψz+,t+iwtw̄tXt,i

µ
wtw̄t

w̄t+i
Xt,i

¶ λw
1−λw

Ht+i],

or,

Ej
t

∞X
i=0

(βξw)
i [−AL

µ³
w̄t
w̄t+i

Xt,i

´ λw
1−λw

Ht+i

¶1+φ
1 + φ

w
λw

1−λw (1+φ)

t

+ψz+,t+iw
1+ λw

1−λw
t w̄tXt,i

µ
w̄t

w̄t+i
Xt,i

¶ λw
1−λw

Ht+i].

Differentiating with respect to wt,

Ej
t

∞X
i=0

(βξw)
i [−AL

µ³
w̄t
w̄t+i

Xt,i

´ λw
1−λw

Ht+i

¶1+φ
1 + φ

λw (1 + φ)w
λw

1−λw (1+φ)−1
t

+ψz+,t+iw
λw

1−λw
t w̄tXt,i

µ
w̄t

w̄t+i
Xt,i

¶ λw
1−λw

Ht+i] = 0.

Dividing and rearranging,

Ej
t

∞X
i=0

(βξw)
i [−AL

Ãµ
w̄t

w̄t+i
Xt,i

¶ λw
1−λw

Ht+i

!1+φ
(F.3)

+
ψz+,t+i

λw
w

1−λw(1+φ)
1−λw

t w̄tXt,i

µ
w̄t

w̄t+i
Xt,i

¶ λw
1−λw

Ht+i] = 0.
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Solving for the wage rate:

w
1−λw(1+φ)

1−λw
t =

Ej
t

P∞
i=0 (βξw)

iAL

µ³
w̄t
w̄t+i

Xt,i

´ λw
1−λw

Ht+i

¶1+φ
Ej
t

P∞
i=0 (βξw)

i ψz+,t+i
λw

w̄tXt,i

³
w̄t
w̄t+i

Xt,i

´ λw
1−λw

Ht+i

=
ALKw,t

w̄tFw,t

where

Kw,t = Ej
t

∞X
i=0

(βξw)
i

Ãµ
w̄t

w̄t+i
Xt,i

¶ λw
1−λw

Ht+i

!1+φ

Fw,t = Ej
t

∞X
i=0

(βξw)
i ψz+,t+i

λw
Xt,i

µ
w̄t

w̄t+i
Xt,i

¶ λw
1−λw

Ht+i.

Thus, the wage set by reoptimizing households is:

wt =

∙
ALKw,t

w̄tFw,t

¸ 1−λw
1−λw(1+φ)

.

We now express Kw,t and Fw,t in recursive form:

Kw,t = Ej
t

∞X
i=0

(βξw)
i

Ãµ
w̄t

w̄t+i
Xt,i

¶ λw
1−λw

Ht+i

!1+φ

= H1+φ
t + βξw

⎛⎝µ w̄t

w̄t+1

πκwt π(1−κw)μz+

πt+1μz+,t+1

¶ λw
1−λw

Ht+1

⎞⎠1+φ

+(βξw)
2

⎛⎝Ã w̄t

w̄t+2

(πtπt+1)
κw (π2)

(1−κw) μ2z+

πt+2πt+1μz+,t+2μz+,t+1

! λw
1−λw

Ht+2

⎞⎠1+φ

+...

or,

Kw,t = H1+φ
t +Etβξw

µ
w̄t

w̄t+1

πκwt π(1−κw)μz+

πt+1μz+,t+1

¶ λw
1−λw (1+φ)

{H1+φ
t+1

+βξw

⎛⎝µw̄t+1

w̄t+2

πκwt+1π
(1−κw)μz+

πt+2μz+,t+2

¶ λw
1−λw

Ht+2

⎞⎠1+φ

+ ...}

= H1+φ
t + βξwEt

µ
w̄t

w̄t+1

πκwt π(1−κw)μz+

πt+1μz+,t+1

¶ λw
1−λw (1+φ)

Kw,t+1

= H1+φ
t + βξwEt

µ
π̃w,t+1
πw,t+1

¶ λw
1−λw (1+φ)

Kw,t+1, (F.4)
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using,

πw,t+1 =
Wt+1

Wt
=

w̄t+1z
+
t+1Pt+1

w̄tz
+
t Pt

=
w̄t+1μz+,t+1πt+1

w̄t
.

Also,

Fw,t = Ej
t

∞X
i=0

(βξw)
i ψz+,t+i

λw
Xt,i

µ
w̄t

w̄t+i
Xt,i

¶ λw
1−λw

Ht+i

=
ψz+,t

λw
Ht

+βξw
ψz+,t+1

λw

µ
w̄t

w̄t+1

¶ λw
1−λw

µ
πκwt π1−κwμz+

πt+1μz+,t+1

¶1+ λw
1−λw

Ht+1

+(βξw)
2 ψz+,t+2

λw

µ
w̄t

w̄t+2

¶ λw
1−λw

×
Ã
(πtπt+1)

κw (π2)
(1−κw) μ2z+

πt+2πt+1μz+,t+2μz+,t+1

!1+ λw
1−λw

Ht+2

+...

or,

Fw,t =
ψz+,t

λw
Ht

+βξw

µ
w̄t

w̄t+1

¶ λw
1−λw

µ
πκwt π1−κwμz+

πt+1μz+,t+1

¶1+ λw
1−λw

{
ψz+,t+1

λw
Ht+1

+βξw

µ
w̄t+1

w̄t+2

¶ λw
1−λw

µ
πκwt+1π

1−κwμz+

πt+2μz+,t+2

¶1+ λw
1−λw ψz+,t+2

λw
Ht+2

+...}

=
ψz+,t

λw
Ht + βξw

µ
w̄t+1

w̄t

¶µ
π̃w,t+1
πw,t+1

¶1+ λw
1−λw

Fw,t+1,

so that

Fw,t =
ψz+,t

λw
Ht + βξwEt

µ
w̄t+1

w̄t

¶µ
π̃w,t+1
πw,t+1

¶1+ λw
1−λw

Fw,t+1. (F.5)

We obtain a second restriction on wt using the relation between the aggregate wage rate

and the wage rates of individual households:

Wt =

∙
(1− ξw)

³
W̃t

´ 1
1−λw

+ ξw (π̃w,tWt−1)
1

1−λw

¸1−λw
.

Dividing both sides by Wt and rearranging,

wt =

⎡⎢⎣1− ξw

³
π̃w,t
πw,t

´ 1
1−λw

1− ξw

⎤⎥⎦
1−λw

.
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Substituting, out for wt from the household’s first order condition for wage optimization:

1

AL

⎡⎢⎣1− ξw

³
π̃w,t
πw,t

´ 1
1−λw

1− ξw

⎤⎥⎦
1−λw(1+φ)

w̄tFw,t = Kw,t.

We now derive the relationship between aggregate homogeneous hours worked, Ht, and

aggregate household hours,

ht ≡
Z 1

0

hj,tdj.

Substituting the demand for hj,t into the latter expression, we obtain,

ht =

Z 1

0

µ
Wj,t

Wt

¶ λw
1−λw

Htdj (F.6)

=
Ht

(Wt)
λw

1−λw

Z 1

0

(Wj,t)
λw

1−λw dj

= ẘ
λw

1−λw
t Ht,

where

ẘt ≡
W̊t

Wt
, W̊t =

∙Z 1

0

(Wj,t)
λw

1−λw dj

¸ 1−λw
λw

.

Also,

W̊t =

∙
(1− ξw)

³
W̃t

´ λw
1−λw

+ ξw

³
π̃w,tW̊t−1

´ λw
1−λw

¸ 1−λw
λw

.

This completes the derivations of the optimal wage setting.
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Table 1: Non-Estimated Parameters in Medium-sized DSGE Model

Parameter Value Description

� 0.25 Capital share
� 0.025 Depreciation rate
� 0.999 Discount factor
� 1.0083 Gross in�ation rate
�g 0.2 Government consumption to GDP ratio
pk0 1 Relative price of capital
�w 1 Wage indexation to �t�1
�w 1.01 Wage markup
�w 0.75 Wage stickiness
�z 1.0041 Gross neutral tech. growth
� 1.0018 Gross invest. tech. growth

Table 3: Medium-sized DSGE Model Steady State at Posterior Mean for Parameters

Variable Standard Model Description

k=y 7.73 Capital to GDP ratio (quarterly)
c=y 0.56 Consumption to GDP ratio
i=y 0.24 Investment to GDP ratio
H 0.63 Steady state labor input
R 1.014 Gross nominal interest rate (quarterly)
Rreal 1.006 Gross real interest rate (quarterly)
rk 0.033 Capital rental rate (quarterly)
AL 2.25 Slope, labor disutility



Table 2: Priors and Posteriors of Parameters for Medium-sized DSGE Model

Parameter Prior Posteriora

Distribution Mean, Std.Dev. Mean, Std.Dev.
[bounds] [5% and 95%] [5% and 95%]

Price setting parameters
Price Stickiness �p Beta 0.50, 0.15 0.64, 0.03

[0, 0.8] [0.23, 0.72] [0.59, 0.70]
Price Markup �f Gamma 1.20, 0.15 1.17, 0.08

[1.01, 1] [1.04, 1.50] [1.04, 1.28]
Monetary authority parameters

Taylor Rule: Interest Smoothing �R Beta 0.80, 0.10 0.87, 0.02
[0, 1] [0.62, 0.94] [0.84, 0.89]

Taylor Rule: In�ation Coe¢ cient r� Gamma 1.60, 0.15 1.43, 0.10
[1.01, 4] [1.38, 1.87] [1.26, 1.60]

Taylor Rule: GDP Coe¢ cient ry Gamma 0.20, 0.15 0.04, 0.02
[0, 2] [0.03, 0.49] [0.00, 0.07]

Household parameters
Consumption Habit b Beta 0.75, 0.15 0.76, 0.02

[0, 1] [0.47, 0.95] [0.73, 0.79]
Inverse Labor Supply Elasticity � Gamma 0.30, 0.20 0.14, 0.03

[0, 1] [0.06, 0.69] [0.09, 0.19]
Capacity Adjustment Costs Curv. �a Gamma 1.00, 0.75 0.32, 0.09

[0, 1] [0.15, 2.46] [0.17, 0.46]
Investment Adjustment Costs Curv. S

00
Gamma 12.00, 8.00 16.49, 3.44
[0, 1] [2.45, 27.43] [11.1, 21.9]

Shocks
Autocorr. Investment Technology � Uniform 0.50, 0.29 0.60, 0.08

[0, 1] [0.05, 0.95] [0.47, 0.72]
Std.Dev. Neutral Tech. Shock (%) �z Inv. Gamma 0.20, 0.10 0.22, 0.02

[0, 1] [0.10, 0.37] [0.19, 0.25]
Std.Dev. Invest. Tech. Shock (%) � Inv. Gamma 0.20, 0.10 0.16, 0.02

[0, 1] [0.10, 0.37] [0.12, 0.20]
Std.Dev. Monetary Shock (APR) �R Inv. Gamma 0.40, 0.20 0.45, 0.03

[0, 1] [0.21, 0.74] [0.39, 0.51]
a Based on standard random walk metropolis algorithm. 600 000 draws, 100 000 for burn-in, acceptance rate 27%.



Taylor Rule: Rt = rππt+1 + rc ĉt

Taylor Rule: Rt = rππt + rc ĉt
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Figure 1: Indeterminacy Regions for Model with Working Capital Channel and Materials Inputs
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Figure 2: Dynamic Properties of Ramsey Equilibrium Under Two Treatments of Subsidy Rate

Note: 'Ramsey, constant subsidy' refers to the Ramsey equilibrium when the subsidy rate is kept constant at a rate that extinguishes distortions
 due to monopoly power and the working capital channel in steady state. 



Figure 3: Dynamic Responses of Variables to a Monetary Policy Shock
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Figure 4: Dynamic Responses of Variables to a Neutral Technology Shock
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Figure 5: Dynamic Responses of Variables to an Investment Specific Technology Shock
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Figure 6: VAR Specification Sensitivity: Response to a Monetary Policy Shock
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Figure 7: VAR Specification Sensitivity: Neutral Technology Shock
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Figure 8: VAR Specification Sensitivity: Investment Specific Technology Shock
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Figure 9: Priors and Posteriors of Estimated Parameters of the Medium−Sized DSGE Model
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