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1 Bayesian Vector Autoregressions (BVARs)

Let Yt = (y1,t, y2,t, . . . , yN,t)′ be a set of time series with a reduced-form VAR(p)
representation:

Yt = c+
p∑
k=1

BkYt−k + ut (1)

where c = (c1, . . . , cN )′ is an n-dimensional vector of constants, Bk is an N ×N
autoregressive matrix, and ut is an N -dimensional white noise process with
covariance matrix Eutu′t = Ψ.

The Litterman (1986) prior, often referred to as the Minnesota prior, shrinks the
diagonal elements of B1 towards one and the other coefficients (B1, . . . , Bp)
towards zero:

Yt = c+ Yt−1 + ut (2)

The moments for the prior distribution of the coefficients are:

E[(Bk)ij ] =

{
δi, j = i, k = 1
0, otherwise

and V[(Bk)ij ] =
(

1
µ1

1
kλ

σi
σj

)2

(3)

The Minnesota prior thus embodies the belief that more recent lags provide
more useful information than more distant ones. The coefficients B1, . . . , Bp

are assumed to be independent and normally distributed. Here, it is assumed
that the covariance matrix of the residuals Ψ has an inverse Wishart prior distri-
bution, following Sims and Zha (1998).1 The prior on the intercept is diffuse.
Note that the random walk prior, δi = 1 for all i, reflects a belief that all the
variables are highly persistent. However, the researcher can also incorporate
priors where some variables are characterised by a degree of mean-reversion,
0 ≤ δ < 1.

The overall tightness of the prior distribution around δi is governed by the hy-
perparameter µ1: µ1 = ∞ imposes the prior exactly so that the data do not
inform the parameter estimates, and λ = 0 removes the influence of the prior
altogether. The factor 1/kλ is the rate at which the prior standard deviation
decreases with the lag length of the VAR, and σi/σj accounts for the different
scale and variability of the data.

The sums of coefficients prior of Doan, Litterman and Sims (1984) is a mod-
ification of the Minnesota prior that is motivated by the frequent practice of

1Litterman’s original assumption that the residual covariance matrix is fixed and diagonal has
been removed, and the hyper-parameter λ has also been added.
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specifying a VAR in first differences. The sums of coefficients prior is best de-
scribed by writing the VAR in error correction form:

∆Yt = c− (IN −B1− . . .−Bp)Yt−1 +C1∆Yt−1 + . . .+Cp−1∆Yt−p+1 + ut (4)

The sums of coefficients prior shrinks (IN −B1− . . .−Bp) towards zero, where
a hyperparameter µ2 controls the degree of shrinkage. As µ2 →∞ the VAR will
increasingly satisfy the prior, while lower values of µ2 will loosen the prior until,
when µ2 = 0, the prior has no influence on VAR estimates. The sums of coeffi-
cients restriction implies that there are as many stochastic trends in the VAR as
there are I(1) variables. Sims and Zha (1998) discuss a prior that makes some
allowance for stable, long-run cointegrating relationships amongst the variables
in the system. This ‘co-persistence’ prior is governed by the hyperparameter µ3.
As µ3 → ∞, the VAR will increasingly satisfy the prior, while as µ3 → 0 there
will be increasingly more stochastic trends in the system.

The Litterman, sums of coefficients, and co-persistence priors can be imple-
mented using dummy observations.

Writing the VAR in matrix notation yields:

Y = XB + U (5)

where Y = (y1, . . . , yT )′, X = (X1, . . . , XT )′, Xt = (Y ′t−1, . . . , Y
′
t−p, 1), U =

(u1, . . . , uT )′, and B = (B1, . . . , Bp, c)′ is the k × N matrix of coefficients with
k = Np+ 1. The form of the prior is then:

Ψ ∼ iW (S0, α0) and B|Ψ ∼ N(B0,Ψ⊗ Ω0) (6)

where the parameters B0, Ω0, S0, and α0 satisfy the prior expectations for B
and Ψ.

The modified Litterman prior is implemented by adding dummy observations
to the system. It can be shown that adding Td dummy observations Yd and Xd

is equivalent to imposing the Inverse-Wishart prior with B0 = (X ′dXd)−1X ′dYd,
Ω = (X ′dXd)−1, S0 = (Yd −XdB0)′(Yd −XdB0), and α0 = Td − k −N − 1.

Augmenting the system with dummy observations yields:

Y ∗ = X∗B + U∗ (7)

where Y ∗ = (Y ′, Y ′d)′, X∗ = (X ′, X ′d)
′ and U∗ = (U ′, U ′d)

′. After adding the dif-
fuse prior Ψ ∝ |Ψ|−(N+3)/2, which ensures the existence of the prior expectation
of Ψ, the posterior has the form:

Ψ|Y ∼ iW (Σ̂, Td + 2 + T − k) and B|Ψ, Y ∼ N(B̂,Ψ⊗ (X∗′X∗)−1) (8)
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where B̂ = (X∗′X∗)−1X∗′Y ∗ and Σ̂ = (Y ∗ − X∗B̂)′(Y ∗ − X∗B̂). Thus, the
posterior expectation of the parameters coincide with the OLS estimates of the
dummy-augmented system. As the prior is loosened, the posterior parameter
estimates will tend to the OLS estimates from the original, un-augmented sys-
tem.

1.1 Conditional forecasting

The reduced-form VAR can be written as::

Yt = c+
p∑
k=1

BkYt−k +A−1
0 εt (9)

where the relationships between the reduced-form parameters and the the struc-
tural parameters are c = A−1

0 C, Bk = A−1
0 Ak, with ut = A−1

0 εt. Given data up
to time T , the h-step out-of-sample forecast at time T can then be decomposed:

YT+h = D +
h∑
j=1

Mh−jεT+j , h = 1, 2, . . . (10)

where:

M0 = A−1
0

Mi =
∑i
j=1BjMi−j , i = 1, 2, . . .

Bj = 0 for j > p

This forecast decomposition consists of two parts. The first term, D, includes
the initial conditions and produces dynamic forecasts in the absence of shocks,
while the second term is the dynamic impact of future structural shocks. Fu-
ture shocks impact on the variables in the VAR through the matrix of impulse
response Mi. A conditional forecast is then defined to be when constraints are
imposed on future values of variables and/or shocks.

Conditional forecasts are constructed on the basis of imposing future values
for some variables (or, equivalently, for future reduced-form shocks). Doan,
Litterman and Sims (1984) show that a unique and optimal (in the least squares
sense) vector of forecast errors that satisfy the constraints on the forecasts is
given by:

ε = R′(RR′)−1r (11)
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where R is a q × k stacked matrix from the impulse responses Mh−hn(., j), ε is
a k × 1 vector correspondingly stacked from εt+hn , and r is a q × 1 vector of
constraints, where k is the total number of future shocks, q is the number of
constraints, and hn = 1, . . . , h.

Waggoner and Zha (1999) show that with conditions imposed on future vari-
ables (or reduced form shocks) the forecast distribution is invariant to orthonor-
mal transformation of the system.

2 Dynamic factor model

The dynamic factor model assumes that a panel of data can be decomposed
into two orthogonal unobserved components: the common component and the
idiosyncatic component. The common component captures the bulk of the co-
variation between the series in the panel and is driven by a handful of shocks,
while the idiosyncatic components are local and affect a only a limited number
of series.

2.1 Specification

The following specification is used in Doz and others (2007), Gianonne and
others (2005,2008), and Matheson (2009).

Xt = ΛFt + εt (12)

Ft = AFt−1 +But (13)

where:

Xt = (x1t, . . . , xnt)′ is an (n× 1) stationary process

Ft = (f1t, ..., frt)′ is a (r × 1) stationary process (static factors)

Λ is an (n× r) matrix of factor loadings (ΛFt is the common component)

εt = (ε1t, ..., εnt)′ is a (n×1) stationary process (idiosyncratic component), with
E(εtε′t) = Ψ

ut = (u1t, ..., uqt)′ is a (q × 1) stationary process (dynamic factors), with ut

WN(0, Iq)
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A is an r × r matrix with all roots det(Ir −Az) inside the unit circle

B is a r × q matrix of rank q

There are two key hyper-parameters that need to be determined: the number of
static factors r and the number of dynamic factors q, where r ≥ q. While formal
statistical criteria can be used to determine r and q, these parameters can also
be chosen using rules of thumb.2

2.2 Two-step estimation procedure

The two-step procedure for estimating the dynamic factor model is detailed in
Gianonne and others (2007).

Steps:

1. Estimate the static factors and then run a VAR on the static factors.

2. Re-estimate the factors using the Kalman filter.

Note that when there are missing observations, Step 1 occurs only on the part of
the sample where all series have the same number of observations. The Kalman
filter used in Step 2 allows us to ‘back out’ (predict) any observations missing
at the beginning of Step 1.
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