

MACRO-LINKAGES, OIL PRICES AND DEFLATION WORKSHOP JANUARY 6-9,2009

Boom-bust Cycles and Monetary Policy

Lawrence Christiano

Boom-bust Cycles and Monetary Policy

- It has often been argued that there is advanced information about technology shocks.
 - Beaudry-Portier, Michelle Alexopoulos, Jaimovic-Rebelo, Christiano-Ilut-Motto-Rostagno
- In the presence of such advance information, standard monetary policy can create an inefficient boom, followed by a bust.

Objective

- Estimate a model in which technology shocks are partially anticipated
 - 'Normal' technology shock:

$$a_t = \rho_a a_{t-1} + \varepsilon_t$$

- Shock considered here (J Davis):

 $a_{t} = \rho_{a}a_{t-1} + \varepsilon_{t} + \xi_{t-1}^{1} + \xi_{t-2}^{2} + \xi_{t-3}^{3} + \xi_{t-4}^{4} + \xi_{t-5}^{5} + \xi_{t-6}^{6} + \xi_{t-7}^{7} + \xi_{t-8}^{8}$

- Evaluate importance of ξ_{t-i}^{i} for business cycles
- Explore implications of ξ_{t-i}^i for monetary policy.

Outline

- Estimation
 - Results
 - 'Excessive optimism' and 2000 recession
- Implications for monetary policy
 - Monetary policy causes economy to overreact to signals....inadvertently creates 'boombust'

Model

- Features (version of CEE)
 - Habit persistence in preferences
 - Investment adjustment costs in change of investment
 - Variable capital utilization
 - Calvo sticky (EHL) wages and prices
 - Non-optimizers: $P_{it} = P_{i,t-1}, W_{j,t} = \mu_z W_{j,t-1}$
 - Probability of not adjusting prices/wages: $\xi_p, \ \xi_w$

Observables and Shocks

- Six observables:
- ontput growth,
- , inflation,
- ponts worked,
- cousumption growth, investment growth,
- T-bill rate.
- Sample Period: 1984Q1 to 2007Q1

dny.rew Shock representations

$$f^{\gamma\gamma}\beta + \left(\frac{f\gamma}{1-if\gamma}\right)$$
 Sol $f^{\gamma}\beta = \left(\frac{f\gamma}{if\gamma}\right)$ Sol

discount rate

 $\log(\zeta_{c,t}) = \rho_{\zeta_c} \log(\zeta_{c,t-1}) + (1-t_c) \log(\zeta_{c,t-1})$

 $\log(\zeta^{1,1}) = b^{\zeta_1} \log(\zeta^{1,1-1}) + (1-b^{\zeta_1}) \log(\zeta^{1,1-1})$ efficiency of investment

technology

 $\sum_{\substack{p_{11} \\ p_{11} \\ p_{1$

*2.T*2

2.22

5.25

22.3

6°L

5.22

6.42

8.62

0.02

1.62

2.8

1.4.1

 $\varepsilon_{t} + \sum_{i=1}^{4} \frac{\zeta_{t-i}}{\zeta_{i}} \sum_{k=1}^{8} \frac{\zeta_{i-i}}{\zeta_{i}}$

1.22

0.64

£.24

45.4

1.91 9.94

 $s_{i} + \sum_{i=1}^{8} \frac{z_{i}}{z_{i}}$

Variance Decomposition, Technology Shocks

 ${}^{M}_{i}_{3} + \left[\left(\frac{i\sqrt{2}}{\sqrt{2}} \right) \operatorname{gol} \frac{\sqrt{2}}{p} + \left(\frac{1+i\pi}{\pi} \right) \operatorname{gol} \overline{\pi}_{\pi}_{n} \right] \frac{1}{\sqrt{2}} \left(\sqrt{2} - 1 \right) + \left(\frac{1-iM}{\sqrt{2}} \right) \operatorname{gol} \overline{\gamma}_{n} = \left(\frac{iM}{\sqrt{2}} \right) \operatorname{gol} \gamma_{n}$

 $Y_{i} = \left[\int_{0}^{1} X_{ji}^{\frac{1}{\lambda_{ji}}} \frac{1}{\lambda_{ji}} \int_{\lambda_{ji}}^{1} \nabla_{\lambda_{ji}} \frac{1}{\lambda_{ji}} \int_{\lambda_{ji}}^{1} \nabla_{\lambda_{ji}} \nabla_{\lambda_{ji}} \frac{1}{\lambda_{ji}} \int_{\lambda_{ji}}^{1} \nabla_{\lambda_{ji}} \nabla_{$

 $I_{I}\left(\begin{array}{c} \underset{i-1}{\overset{\text{intermediation}}{1}} I_{i,1} \underbrace{\sum_{i,1}}_{i,1} \underbrace{\sum_{i,1}} S_{i,1} \underbrace{\sum_{i,1}} S_{i,1} \underbrace{\sum_{i-1}} \underbrace{\sum_{i-1}} S_{i,1} \underbrace{\sum_{i-$

 $E_{1}^{t}\sum_{\infty}^{t-\upsilon} \left(\frac{1^{-0}\beta^{-1/4}}{1}\right)_{1} \underbrace{\underbrace{\mathcal{C}^{t+1}}}_{\text{befence spece}} \left\{ \operatorname{log}(C^{t+1} - PC^{t+l-1}) - h^{T}\frac{5}{l_{5}}\right\}$

interest rate

noitafion

smod gol

output growth

investment growth

consumption growth

variable

ποηείατy ροlicy

 $J_{n'n}^{i}3 + I_{M}^{i-1}3Wd = M_{M}^{i}3$

The standard New-Keynesian Model

 $(\alpha_i = p\alpha_{i-1} + \varepsilon_i + \zeta_{i-p}) (\alpha_i = \log \text{ technology})$

 $(\mathfrak{ret}^* = \mathfrak{rr} - (1 - \rho)\mathfrak{a}_i + \xi_{i+1-p} (\mathfrak{natural} (\mathfrak{Ransey}) \mathfrak{rate})$

 $\pi_i = \beta E_{i\pi_{i+1}} + \kappa x_i - \pi_i$ (Calvo pricing equation)

 $x_i = -[v_i - E_i \pi_{i+1} - v_i] + E_i x_{i+1}$ (intertemporal equation)

 $v_i = \phi_\pi E_i \pi_{i+1} + \phi_\pi x_i$ (policy rule)

Implications for Monetary Policy

 $\sum_{\substack{n=1\\n \neq 2}}^{n-1} \sum_{j=1}^{n-1} \sum_{j=$

'noitsmrothi theost

Estimated technology shock process:

'earlier information'

- Estimated monetary policy rule induces overreaction to signal shock
- Problem:

log, technology shock

- positive signal induces expectation that consumption
 will be high in the future
- Ramsey-efficient ('natural') real rate of interest jumps
- Under Taylor rule, real rate not allowed to jump, so
- Intuition easy to see in Clarida-Gali-Gertler model

\$206.	S6 [.]	I	0	6.0	6.0	0.1	<i>L</i> [.] 0	10gVr			
0	0	0	0	4 0.0-	4 0.0-	40.0-	<i>L</i> ` 0	1ygol			
5206.	S6.	I	0	S206.	S6.	I	0	1Agol			
0	0	0	0				I-	¹ <i>¥</i> ₽			
٤	7	I	0	ε	7	I	0				
Case Where Signal is True											
0	0	0	0	0	0	0	<i>L</i> ` 0	10gy1			
0	0	0	0	0	0	0	<i>L</i> ` 0	1ygol			
0	0	0	0	0	0	0	0	1Ngol			
0	0	0	0	0	0	0	I-	¹ <i>¥∀</i>			
٤	7	I	0	ε	7	I	0				
Case Where Signal is False											
Period	Period			Period							
Samsey	Ramsey				muirdiliup ^H						
Response to signal that technology will expand 1% in period 1											

which was graphed incorrectly.	
worked response in the previous slides,	
The following slide corrects the hours	•

Let's see how a signal that turns out to be false works in the full, estimated model.

frictions.

Bernanke-Gertler-Gilchrist financial

Ramsey-efficient allocations require sharp rise in rate of interest, which standard monetary policy does not deliver'.

Problem is most severe when wages are sticky relative to prices.